首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat straw used in this study contained 44.24 +/- 0.28% cellulose and 25.23 +/- 0.11% hemicellulose. Alkaline H(2)O(2) pretreatment and enzymatic saccharification were evaluated for conversion of wheat straw cellulose and hemicellulose to fermentable sugars. The maximum yield of monomeric sugars from wheat straw (8.6%, w/v) by alkaline peroxide pretreatment (2.15% H(2)O(2), v/v; pH 11.5; 35 degrees C; 24 h) and enzymatic saccharification (45 degrees C, pH 5.0, 120 h) by three commercial enzyme preparations (cellulase, beta-glucosidase, and xylanase) using 0.16 mL of each enzyme preparation per g of straw was 672 +/- 4 mg/g (96.7% yield). During the pretreatment, no measurable quantities of furfural and hydroxymethyl furfural were produced. The concentration of ethanol (per L) from alkaline peroxide pretreated enzyme saccharified wheat straw (66.0 g) hydrolyzate by recombinant Escherichia coli strain FBR5 at pH 6.5 and 37 degrees C in 48 h was 18.9 +/- 0.9 g with a yield of 0.46 g per g of available sugars (0.29 g/g straw). The ethanol concentration (per L) was 15.1 +/- 0.1 g with a yield of 0.23 g/g of straw in the case of simultaneous saccharification and fermentation by the E. coli strain at pH 6.0 and 37 degrees C in 48 h.  相似文献   

2.
Autohydrolysis and ethanol-alkali pulping were used as pretreatment methods of wheat straw for its subsequent saccharification by Trichoderma reesei cellulase. The basic hydrolysis parameters, i.e., reaction time, pH, temperature, and enzyme and substrate concentration, were optimized to maximize sugar yields from ethanol-alkali modified straw. Thus, a 93% conversion of 2.5% straw material to sugar syrup containing 73% glucose was reached in 48 h using 40 filter paper units/g hydrolyzed substrate. The pretreated wheat straw was then fermented to ethanol at 43 degrees C in the simultaneous saccharification and fermentation (SSF) process using T. reesei cellulase and Kluyveromyces fragilis cells. From 10% (w/v) of chemically treated straw (dry matter), 2.4% (w/v) ethanol was obtained after 48 h. When the T. reesei cellulase system was supplemented with beta-glucosidase from Aspergillus niger, the ethanol yield in the SSF process increased to 3% (w/v) and the reaction time was shortened to 24 h.  相似文献   

3.
Wheat straw consists of 48.57 ± 0.30% cellulose and 27.70 ± 0.12% hemicellulose on dry solid (DS) basis and has the potential to serve as a low cost feedstock for production of ethanol. Dilute acid pretreatment at varied temperature and enzymatic saccharification were evaluated for conversion of wheat straw cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from wheat straw (7.83%, w/v, DS) by dilute H2SO4 (0.75%, v/v) pretreatment and enzymatic saccharification (45 °C, pH 5.0, 72 h) using cellulase, β-glucosidase, xylanase and esterase was 565 ± 10 mg/g. Under this condition, no measurable quantities of furfural and hydroxymethyl furfural were produced. The yield of ethanol (per litre) from acid pretreated enzyme saccharified wheat straw (78.3 g) hydrolyzate by recombinant Escherichia coli strain FBR5 was 19 ± 1 g with a yield of 0.24 g/g DS. Detoxification of the acid and enzyme treated wheat straw hydrolyzate by overliming reduced the fermentation time from 118 to 39 h in the case of separate hydrolysis and fermentation (35 °C, pH 6.5), and increased the ethanol yield from 13 ± 2 to 17 ± 0 g/l and decreased the fermentation time from 136 to 112 h in the case of simultaneous saccharification and fermentation (35 °C, pH 6.0).  相似文献   

4.
Bioethanol production from ammonia percolated wheat straw   总被引:2,自引:0,他引:2  
This study examined the effectiveness of ammonia percolation pretreatment of wheat straw for ethanol production. Ground wheat straw at a 10% (w/v) loading was pretreated with a 15% (v/v) ammonia solution. The experiments were performed at treatment temperature of 50∼170°C and residence time of 10∼150 min. The solids treated with the ammonia solution showed high lignin degradation and sugar availability. The pretreated wheat straw was hydrolyzed by a cellulase complex (NS50013) and β-glucosidase (NS50010) at 45°C. After saccharification, Saccharomyces cerevisiae was added for fermentation. The incubator was rotated at 120 rpm at 35°C. As a result of the pretreatment, the delignification efficiency was > 70% (170°C, 30 min) and temperature was found to be a significant factor in the removal of lignin than the reaction time. In addition, the saccharification results showed an enzymatic digestibility of > 90% when 40 FPU/g cellulose was used. The ethanol concentration reached 24.15 g/L in 24 h. This paper reports a total process for bioethanol production from agricultural biomass and an efficient pretreatment of lignocellulosic material.  相似文献   

5.
Understanding of how the plant cell walls of different plant species respond to pretreatment can help improve saccharification in bioconversion processes. Here, we studied the chemical and structural modifications in lignin and hemicellulose in hydrothermally pretreated poplar and wheat straw using wet chemistry and 2D heteronuclear single quantum coherence nuclear magnetic resonance (NMR) and their effects on cellulose conversion. Increased pretreatment severity reduced the levels of β─O─4 linkages with concomitant relatively increased levels of β─5 and β─β structures in the NMR spectra. β─5 structures appeared at medium and high severities for wheat straw while only β─β structures were observed at all pretreatment severities for poplar. These structural differences accounted for the differences in cellulose conversion for these biomasses at different severities. Changes in the hemicellulose component include a complete removal of arabinosyl and 4-O-methyl glucuronosyl substituents at low and medium pretreatment severities while acetyl groups were found to be relatively resistant toward hydrothermal pretreatment. This illustrates the importance of these groups, rather than xylan content, in the detrimental role of xylan in cellulose saccharification and helps explain the higher poplar recalcitrance compared to wheat straw. The results point toward the need for both enzyme preparation development and pretreatment technologies to target specific plant species.  相似文献   

6.
To improve process economics of the lignocellulose to ethanol process a reactor system for enzymatic liquefaction and saccharification at high-solids concentrations was developed. The technology is based on free fall mixing employing a horizontally placed drum with a horizontal rotating shaft mounted with paddlers for mixing. Enzymatic liquefaction and saccharification of pretreated wheat straw was tested with up to 40% (w/w) initial DM. In less than 10 h, the structure of the material was changed from intact straw particles (length 1-5 cm) into a paste/liquid that could be pumped. Tests revealed no significant effect of mixing speed in the range 3.3-11.5 rpm on the glucose conversion after 24 h and ethanol yield after subsequent fermentation for 48 h. Low-power inputs for mixing are therefore possible. Liquefaction and saccharification for 96 h using an enzyme loading of 7 FPU/g.DM and 40% DM resulted in a glucose concentration of 86 g/kg. Experiments conducted at 2%-40% (w/w) initial DM revealed that cellulose and hemicellulose conversion decreased almost linearly with increasing DM. Performing the experiments as simultaneous saccharification and fermentation also revealed a decrease in ethanol yield at increasing initial DM. Saccharomyces cerevisiae was capable of fermenting hydrolysates up to 40% DM. The highest ethanol concentration, 48 g/kg, was obtained using 35% (w/w) DM. Liquefaction of biomass with this reactor system unlocks the possibility of 10% (w/w) ethanol in the fermentation broth in future lignocellulose to ethanol plants.  相似文献   

7.
Hemicellulose bioconversion   总被引:24,自引:0,他引:24  
Various agricultural residues, such as corn fiber, corn stover, wheat straw, rice straw, and sugarcane bagasse, contain about 20–40% hemicellulose, the second most abundant polysaccharide in nature. The conversion of hemicellulose to fuels and chemicals is problematic. In this paper, various pretreatment options as well as enzymatic saccharification of lignocellulosic biomass to fermentable sugars is reviewed. Our research dealing with the pretreatment and enzymatic saccharification of corn fiber and development of novel and improved enzymes such as endo-xylanase, β-xylosidase, and α-l-arabinofuranosidase for hemicellulose bioconversion is described. The barriers, progress, and prospects of developing an environmentally benign bioprocess for large-scale conversion of hemicellulose to fuel ethanol, xylitol, 2,3-butanediol, and other value-added fermentation products are highlighted.  相似文献   

8.
Native wheat straw (WS) was pretreated with various concentrations of H2SO4 and NaOH followed by secondary treatments with ethylene diamine (EDA) and NH4OH prior to enzymatic saccharification. Conversion of the cellulosic component to sugar varied with the chemical modification steps. Treatment solely with alkali yield 51–75% conversion, depending on temperature. Acid treatment at elevated tempeatures showed a substantial decrease in the hemicellulose component, whereas EDA-treated WS (acid pretreated) showed a 69–75% decrease in the lignin component. Acid-pretreated EDA-treated straw yielded a 98% conversion rate, followed by 83% for alkali–NH4OH treated straws. In other experiments, WS was pretreated with varying concentration of H2SO4 or NaOh followed by NH4OH treatment prior to enzymatic hydrolysis. Pretreatment of straw with 2% NaOH for 4 h coupled to enzymatic hydrolysis yield a 76% conversion of the cellulosic component. Acid–base combination pretreatment yielded only 43% conversions. A reactor column was subsequently used to measure modification–saccharification–fermentation for wheat straw conversion on a larger scale. Thirty percent conversions of wheat straw cellulosics to sugar were observed with subsequent fermentation to alcohol. The crude cellulase preparation yielded considerable quantities of xylose in addition to the glucose. Saccharified materials were fermented directly with actively proliferating proliferating yeast cells without concentration of the sugars.  相似文献   

9.
The conversion of lignocellulose to valuable products requires I: a fractionation of the major components hemicellulose, cellulose, and lignin, II: an efficient method to process these components to higher valued products. The present work compares liquid hot water (LHW) pretreatment to the soda pulping process and to the ethanol organosolv pretreatment using rye straw as a single lignocellulosic material. The organosolv pretreated rye straw was shown to require the lowest enzyme loading in order to achieve a complete saccharification of cellulose to glucose. At biomass loadings of up to 15% (w/w) cellulose conversion of LHW and organosolv pretreated lignocellulose was found to be almost equal. The soda pulping process shows lower carbohydrate and lignin recoveries compared to the other two processes. In combination with a detailed analysis of the different lignins obtained from the three pretreatment methods, this work gives an overview of the potential products from different pretreatment processes.  相似文献   

10.
Soybean hulls were evaluated as a resource for production of ethanol by the simultaneous saccharification and fermentation (SSF) process, and no pretreatment of the hulls was found to be needed to realize high ethanol yields with Saccharomyces cerevisiae D5A. The impact of cellulase, β-glucosidase and pectinase dosages were determined at a 15% biomass loading, and ethanol concentrations of 25–30 g/L were routinely obtained, while under these conditions corn stover, wheat straw, and switchgrass produced 3–4 times lower ethanol yields. Removal of carbohydrates also concentrated the hull protein to over 25% w/w from the original roughly 10%. Analysis of the soybean hulls before and after fermentation showed similar amino acid profiles including an increase in the essential amino acids lysine and threonine in the residues. Thus, eliminating pretreatment should assure that the protein in the hulls is preserved, and conversion of the carbohydrates to ethanol with high yields produces a more concentrated and valuable co-product in addition to ethanol. The resulting upgraded feed product from soybean hulls would likely to be acceptable to monogastric as well as bovine livestock.  相似文献   

11.
This research shows the effect of dilute acid pretreatment with various sulfuric acid concentrations (0.5–2.0% [wt/vol]) on enzymatic saccharification and fermentation yield of rye straw. After pretreatment, solids of rye straw were suspended in Na citrate buffer or post-pretreatment liquids (prehydrolysates) containing sugars liberated after hemicellulose hydrolysis. Saccharification was conducted using enzymes dosage of 15 or 25 FPU/g cellulose. Cellulose saccharification rate after rye straw pretreatment was enhanced by performing enzymatic hydrolysis in sodium citrate buffer in comparison with hemicellulose prehydrolysate. The maximum cellulose saccharification rate (69%) was reached in sodium citrate buffer (biomass pretreated with 2.0% [wt/vol] H2SO4). Lignocellulosic complex of rye straw after pretreatment was subjected to separate hydrolysis and fermentation (SHF) or separate hydrolysis and co-fermentation (SHCF). The SHF processes conducted in the sodium citrate buffer using monoculture of Saccharomyces cerevisiae (Ethanol Red) were more efficient compared to hemicellulose prehydrolysate in respect with ethanol yields. Maximum fermentation efficiency of SHF processes obtained after rye straw pretreatment at 1.5% [wt/vol] H2SO4 and saccharification using enzymes dosage of 25 FPU/g in sodium citrate buffer, achieving 40.6% of theoretical yield. However, SHCF process using cocultures of pentose-fermenting yeast, after pretreatment of raw material at 1.5% [wt/vol] H2SO4 and hydrolysis using enzymes dosage of 25 FPU/g, resulted in the highest ethanol yield among studied methods, achieving 9.4 g/L of ethanol, corresponding to 55% of theoretical yield.  相似文献   

12.
Enhanced enzymatic saccharification of rice straw by microwave pretreatment   总被引:1,自引:0,他引:1  
Ma H  Liu WW  Chen X  Wu YJ  Yu ZL 《Bioresource technology》2009,100(3):1279-1284
In this study, Box-Behnken design and response surface methodology were employed to plan experiments and optimize the microwave pretreatment of rice straw. Experimental results show that microwave intensity (MI), irradiation time (IT) and substrate concentration (SC) were main factors governing the enzymatic saccharification of rice straw. The maximal efficiencies of cellulose, hemicellulose and total saccharification were respectively increased by 30.6%, 43.3% and 30.3% under the optimal conditions of MI 680 W, IT 24 min and SC 75 g/L. The chemical composition analysis of straw further confirmed that microwave pretreatment could disrupt the silicified waxy surface, break down the lignin-hemicellulose complex and partially remove silicon and lignin.  相似文献   

13.
Despite the well‐recognized merits of simultaneous saccharification and co‐fermentation (SSCF) on relieving sugar product inhibition on cellulase activity, a practical concomitance difficulty of xylose with inhibitors in the pretreated lignocellulose feedstock prohibits the essential application of SSCF for cellulosic ethanol fermentation. To maximize the SSCF potentials for cellulosic ethanol production, a dry biorefining approach was proposed starting from dry acid pretreatment, disk milling, and biodetoxification of lignocellulose feedstock. The successful SSCF of the inhibitor free and xylose conserved lignocellulose feedstock after dry biorefining reached a record high ethanol titer at moderate cellulase usage and minimum wastewater generation. For wheat straw, 101.4 g/L of ethanol (equivalent to 12.8% in volumetric percentage) was produced with the overall yield of 74.8% from cellulose and xylose, in which the xylose conversion was 73.9%, at the moderate cellulase usage of 15 mg protein per gram cellulose. For corn stover, 85.1 g/L of ethanol (equivalent to 10.8% in volumetric percentage) is produced with the overall conversion of 84.7% from cellulose and xylose, in which the xylose conversion was 87.7%, at the minimum cellulase usage of 10 mg protein per gram cellulose. Most significantly, the SSCF operation achieved the high conversion efficiency by generating the minimum amount of wastewater. Both the fermentation efficiency and the wastewater generation in the current dry biorefining for cellulosic ethanol production are very close to that of corn ethanol production, indicating that the technical gap between cellulosic ethanol and corn ethanol has been gradually filled by the advancing biorefining technology.  相似文献   

14.
Briquetting of plant biomass with low bulk density is an advantage for handling, transport, and storage of the material, and heating of the biomass prior to the briquetting facilitates the densification process and improves the physical properties of the briquettes. This study investigates the effects of preheating prior to briquetting of wheat straw (WS) on subsequent hydrothermal pretreatment and enzymatic conversion to fermentable sugars. WS (11% moisture content) was densified to briquettes under different conditions; without preheating or with preheating at 75 or 125°C for either 5 or 10 min. Subsequent hydrothermal pretreatment was done for both un-briquetted WS and for briquettes. Enzymatic saccharification was afterwards performed for all samples. The results showed that as expected, nonpretreated WS briquettes gave very low sugar yields (22–29% of the cellulose content), even though preheating at 125°C prior to briquetting (without pretreatment) improved sugar yields somewhat. When combined with pretreatment, briquetting with preheating showed neutral or negative effects on sugar yield. This result suggests that moderate preheating (75°C for 5 min) before briquetting improved bulk density and compressive resistance of briquettes without impeding subsequent enzymatic conversion. However, excessive preheating (75 or 125°C for 10 min) before briquetting may result in irreversible structural modifications that hinder the interaction between biomass and water during pretreatment, thereby decreasing the accessibility of cellulose to enzymatic saccharification.  相似文献   

15.
Alkaline-oxidative (A/O) pretreatment and enzymatic saccharification were optimized for bioethanol fermentation from water hyacinth by Saccharomyces cerevisiae. Water hyacinth was subjected to A/O pretreatment at various NaOH and H(2)O(2) concentrations and reaction temperatures for the optimization of bioethanol fermentation by S. cerevisiae. The most effective condition for A/O pretreatment was 7% (w/v) NaOH at 100 °C and 2% (w/v) H(2)O(2). The carbohydrate content was analyzed after reaction at various enzyme concentrations and enzyme ratios using Celluclast 1.5 L and Viscozyme L to determine the effective conditions for enzymatic saccharification. After ethanol fermentation using S. cerevisiae KCTC 7928, the concentration of glucose, ethanol and glycerol was analyzed by HPLC using a RI detector. The yield of ethanol in batch fermentation was 0.35 g ethanol/g biomass. Continuous fermentation was carried out at a dilution rate of 0.11 (per h) and the ethanol productivity was 0.77 [g/(l h)].  相似文献   

16.
探讨了木质纤维素经过湿氧化爆破后在同步糖化发酵过程中酵母产乙醇的基本规律.采用单因素方法对湿氧化爆破条件、酶系组成和添加量以及预酶解时间和温度进行了优化.不同湿氧化爆破预处理条件下的稻秆对同步糖化发酵工艺的影响较大,在预处理温度160 ℃,进氧压力为4×105 Pa,碱用量为6%(w/w),反应时间为20 min的条件...  相似文献   

17.

Background

Low cost of raw materials and good process yields are necessary for future lignocellulosic biomass biorefineries to be sustainable and profitable. A low cost feedstock will be diverse, changing as a function of seasonality and price and will most likely be available from multiple sources to the biorefinery. The efficacy of the bioconversion process using mixed biomass, however, has not been thoroughly investigated. Considering the seasonal availability of wheat straw and the year round availability of hybrid poplar in the Pacific Northwest, this study aims to determine the impact of mixing wheat straw and hybrid poplar biomass on the overall sugar production via steam pretreatment and enzymatic saccharification.

Results

Steam pretreatment proved to be effective for processing different mixtures of hybrid poplar and wheat straw. Following SO2-catalyzed steam explosion pretreatment, on average 22 % more sugar monomers were recovered using mixed feedstock than either single biomass. Improved sugar recovery with mixtures of poplar and wheat straw continued through enzymatic hydrolysis. After steam pretreatment and saccharification, the mixtures showed 20 % higher sugar yields than that produced from hybrid poplar and wheat straw alone.

Conclusions

Blending hybrid poplar and wheat straw resulted in more monomeric sugar recovery and less sugar degradation. This synergistic effect is attributable to interaction of hybrid poplar’s high acetic acid content and the presence of ash supplied by wheat straw. As a consequence on average 20 % more sugar was yielded by using the different biomass mixtures. Combining hybrid poplar and wheat straw enables sourcing of the lowest cost biomass, reduces seasonal dependency, and results in increasing biofuels and chemicals productivity in a cellulosic biorefinery.
  相似文献   

18.
19.
Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment   总被引:1,自引:0,他引:1  
Rice straw is a lignocellulosic biomass that constitutes a renewable organic substance and alternative source of energy; however, its structure confounds the liberation of monosaccharides. Pretreating rice straw using a TiO(2)/UV system facilitated its hydrolysis with Accellerase 1000(?), suggesting that hydroxyl radicals (OH·) from the TiO(2)/UV system could degrade lignin and carbohydrates. TiO(2)/UV pretreatment was an essential step for conversion of hemicellulose to xylose; optimal conditions for this conversion were a TiO(2) concentration of 0.1% (w/v) and an irradiation time of 2 h with a UV-C lamp at 254 nm. After enzymatic hydrolysis, the sugar yields from rice straw pretreated with these parameters were 59.8 ± 0.7% of the theoretical for glucose (339 ± 13 mg/g rice straw) and 50.3 ± 2.8% for xylose (64 ± 3 mg/g rice straw). The fermentation of enzymatic hydrolysates containing 10.5 g glucose/L and 3.2 g xylose/L with Pichia stipitis produced 3.9 g ethanol/L with a corresponding yield of 0.39 g/g rice straw. The maximum possible ethanol conversion rate is 76.47%. TiO(2)/UV pretreatment can be performed at room temperature and atmospheric pressure and demonstrates potential in large-scale production of fermentable sugars.  相似文献   

20.
Zhao X  Zhang L  Liu D 《Bioresource technology》2008,99(9):3729-3736
In order to utilize and control the invasive weed, crofton weed (Eupatorium adenophorum Spreng), a potential pathway was proposed by using it as a feedstock for production of fermentable sugars. Three chemical pretreatment methods were used for improving enzymatic saccharification of the weed stem. Mild H2SO4 pretreatment could obtain a relatively high yield of sugars in the pretreatment (32.89%, based on initial holocellulose), however, it led to only a slight enhancement of enzymatic digestibility. NaOH pretreatment could obtain a higher enzymatic conversion ratio of cellulose compared with H2SO4 pretreatment. Peracetic acid (PAA) pretreatment seemed to be the most effective for improving enzymatic saccharification of the weed stem in the three chemical pretreatment methods under the same conditions. The conversion ratio of cellulose in the sample pretreated by PAA under the "optimal" condition was increased to 50% by cellulase loading of 80 FPU/g cellulose for 72 h incubation. A number of empirical quadratic models were successfully developed according to the experimental data to predict the yield of sugar and degree of delignification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号