首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male reproductive success is influenced by competitive interactions during precopulatory and postcopulatory selective episodes. Consequently, males can gain reproductive advantages during precopulatory contest competition by investing in weaponry and during postcopulatory sperm competition by investing in ejaculates. However, recent theory predicts male expenditure on weaponry and ejaculates should be subject to a trade‐off, and should vary under increasing risk and intensity of sperm competition. Here, we provide the first comparative analysis of the prediction that expenditure on weaponry should be negatively associated with expenditure on testes mass. Specifically, we assess how sexual selection influences the evolution of primary and secondary sexual traits among pinnipeds (seals, sea lions, and walruses). Using recently developed comparative methods, we demonstrate that sexual selection promotes rapid divergence in body mass, sexual size dimorphism (SSD), and genital morphology. We then show that genital length appears to be positively associated with the strength of postcopulatory sexual selection. However, subsequent analyses reveal that both genital length and testes mass are negatively associated with investment in precopulatory weaponry. Thus, our results are congruent with recent theoretical predictions of contest‐based sperm competition models. We discuss the possible role of trade‐offs and allometry in influencing patterns of reproductive trait evolution in pinnipeds.  相似文献   

2.
Nonfertilizing sperm with special morphologies have long been known to exist in invertebrates. Until recently, abnormal sperm in mammals were considered errors in production. Now, however, Baker and Bellis (1988, 1989) have proposed that mammalian sperm, like some invertebrate sperm, are polymorphic and adapted to a variety of nonfertilizing roles in sperm competition, including prevention of passage of sperm inseminated by another male. More specifically, their “kamikaze” sperm hypothesis proposes that deformed mammalian sperm are adapted to facilitate the formation and functioning of copulatory plugs (Baker and Bellis, 1988). Here I argue that most, maybe all, mammals are unlikely to produce nonfertilizing sperm. First, mammals might not be able to afford to evolve nonfertilizing sperm, given that a) fertilization is often unlikely despite the huge numbers of sperm produced; b) production of larger numbers of sperm is constrained, presumably because of metabolic costs, evidence for which includes the fact that in species in which sperm morphology and anatomy of the female reproductive tract increase the probability of fertilization, the numbers of sperm produced is lower than in others; and c) selection appears to act against the production of deformed sperm. Second, some of the evidence advanced for the existence of nonfertilizing sperm does not in fact support the idea. Third, accessory gland secretions are sufficient on their own to coagulate semen and produce fully functioning plugs; thus the male that used accessory gland secretions would be at a clear advantage over the male that diluted his fertilizing sperm with “kamikaze” sperm; and indeed, current evidence indicates selection on accessory glands, not sperm morphology, to enhance coagulation of semen. Fourth, predictions made on the basis of the “kamikaze” sperm hypothesis are not supported by quantitative comparisons of data from polyandrous and monandrous primates (i.e., those in which several males mate with a fertile female, and therefore in which sperm competition should be operating, and those in which only one male mates). Although sperm competition is almost certainly more intense in polyandrous genera than in monandrous genera (as indicated by, e.g., more frequent copulations and the production of more sperm per ejaculate from larger spermatogenic organs), polyandrous genera do not produce a greater proportion of deformed (i.e., nonfertilizing) sperm than do monandrous genera, or even necessarily a greater number of deformed sperm; nor a greater variety of sperm sizes—indeed they might produce fewer; nor fewer motile sperm (as might be expected if sperm are selected to stay behind and compete with sperm from subsequent males); and nor larger sperm (as might be expected if sperm are produced for functions other than to reach the egg). In sum, currently available evidence suggests that the function of all mammalian sperm is to fertilize, and that sperm competition in mammals occurs through scramble competition, not contest competition.  相似文献   

3.
Sperm swimming speed is an important determinant of male fertility and sperm competitiveness. Despite its fundamental biological importance, the underlying evolutionary processes affecting this male reproductive trait are poorly understood. Using a comparative approach in a phylogenetic framework, we tested the predictions that sperm swim faster with (1) increased risk of sperm competition, (2) shorter duration of female sperm storage, and (3) increased sperm length. We recorded sperm swimming speed in 42 North American and European free-living passerine bird species, representing 35 genera and 16 families. We found that sperm swimming speed was positively related to the frequency of extrapair paternity (a proxy for the risk of sperm competition) and negatively associated with clutch size (a proxy for the duration of female sperm storage). Sperm swimming speed was unrelated to sperm length, although sperm length also increased with the frequency of extrapair paternity. These results suggest that sperm swimming speed and sperm length are not closely associated traits and evolve independently in response to sperm competition in passerine birds. Our findings emphasize the significance of both sperm competition and female sperm storage duration as evolutionary forces driving sperm swimming speed.  相似文献   

4.
In many species, the physical act of mating and exposure to accessory gland proteins (Acps) in male seminal fluid reduces female survival and offspring production. It is not clear what males gain from harming their sexual partners or why females mate frequently despite being harmed. Using sterile strains of Drosophila melanogaster that differ in their production of Acps, we found that both the physical act of mating and exposure to male seminal fluid in mothers increase the fitness of daughters. We show that the changes in daughter fitness are mediated by parental effects, not by sexual selection involving good genes or owing to variation in maternal egg production. These results support the idea that male harm of females might partly evolve through cross-generational fitness benefits.  相似文献   

5.
Understanding the selection pressures shaping components of male reproductive success is essential for assessing the role of sexual selection on phenotypic evolution. A male's competitive reproductive success is often measured in sequential mating tests by recording P1 (first mating male) and P2 (second mating male) paternity scores. How each of these scores relates to a male's overall fitness, for example, lifetime reproductive success is, however, not known. This information is needed to determine whether males benefit from maximizing both P1 and P2 or by trading off P1 against P2 ability. We measured P1, P2, and an index of lifetime reproductive success (LRSi, a male's competitive reproductive success measured over 12 days) for individual male Drosophila melanogaster. We found no evidence for phenotypic correlations between P1 and P2. In addition, whereas both P1 and P2 were associated with relative LRSi, only P2 predicted absolute LRSi. The results suggest that P2 was most closely linked to LRSi in the wild‐type population studied, a finding which may be common to species with strong second male sperm precedence. The study illustrates how P1 and P2 can have differing relationships with a male's overall reproductive success, and highlights the importance of understanding commonly used measures of sperm competition in the currency of fitness.  相似文献   

6.
We have examined sperm morphology and dimensions in Eutherian mammals. In most Eutherians, sperm heads are round or oval and spermatozoa have short tails (average sperm length about 65 microns; range = 33-121 microns). Rodents, however, clearly depart from the typical Eutherian pattern in that they show a broad array of head morphs and an extreme range of sperm dimensions (35-250 microns). In order to trace the evolutionary changes that rodent sperm have undergone, we have used phylogenetic relationships based on biogeographical, morphological, chromosomal and genic data, and we have superimposed onto them the information available on sperm traits. Analyses were carried out for five rodent groups on which enough information was available. The evolutionary trends which emerged from these studies have two main points in common: throughout evolution spermatozoa have become enlarged and morphologically more complex, and this process seems to have taken place independently in different lineages. A general model was developed which outlines the different evolutionary pathways that rodent sperm have undergone. The adaptive significance of the increase in head complexity and the elongation of the sperm tail remains obscure. We have integrated information from evolutionary, physiological and behavioural studies to address this issue. We argue that two main selective forces may have favoured these changes: female selection within the reproductive tract and sperm competition. The female tract represents a formidable barrier for spermatozoa and its provides an environment where numerous interactions take place. The extent of these barriers and the complexity of these poorly understood interactions suggest that females may be exercising a strong selection, which may enable them to favour particular types of spermatozoa or ejaculates from particular males. Throughout their evolution males must have evolved adaptations to overcome these barriers, and the conflicting interests of choosy females. Sperm competition is a potent evolutionary force among mammals, which has influenced not only the evolution of sperm numbers but also changes in sperm dimensions. Thus, sperm competition has favoured the elongation of the sperm tail, which has led to the attainment of faster swimming speed, an important factor when sperm from rival males compete to reach the ova first.  相似文献   

7.
The role of male accessory gland (MAG) secretions in inducing refractoriness to further mating in mosquitoes (Diptera: Culicidae) was established in the late 1960s. In a set of simple experiments, MAG extract was injected intra-thoraxically into the hemocoel of virgin Aedes aegypti (L.), Culex pipiens pipiens (L.) and Anopheles quadrimaculatus Say females. This subsequently caused most females to remain unmated when exposed to males. For anophelines these findings were later challenged by a study involving intra-abdominal injections of MAG extracts into Anopheles gambiae Giles s.l. and Anopheles albimanus Wiedmann females, which failed to induce refractoriness to further mating. These findings led to controversy about the respective role of sperm and accessory gland peptides in inducing female monogamy in Anopheles and are at odds with our current understanding of the mating process in Drosophila spp. (Diptera: Drosophillidae) and other dipterans. Here we confirm the function of MAG secretions in anophelines experimentally by showing that intra-thoracic injections in Anopheles stephensi Liston and in the M and S molecular forms of An. gambiae s.s. result in the expected female monogamy. Cross-injections of MAG extracts between the M and S molecular forms of An. gambiae , two cryptic taxa within An. gambiae s.s. which are thought to be undergoing incipient speciation, also elicited effective refractoriness, suggesting that the two sub-taxa have not diverged with regard to sex peptides responsible for female monogamy. Importantly, this also suggests that the rare cases of re-mating following cross-mating observed in this species may not be a form of reproductive barrier between molecular forms.  相似文献   

8.
Sperm competition is a powerful and widespread evolutionary force that drives the divergence of behavioural, physiological and morphological traits. Elucidating the mechanisms governing differential fertilization success is a fundamental question of sperm competition. Both sperm and nonsperm ejaculate components can influence sperm competition outcomes. Here, we investigate the role of a nonsemen copulatory fluid in sperm competition. Male Japanese quail possess a gland that makes meringue‐like foam. Males produce and store foam independent of sperm and seminal fluid, yet transfer foam to females during copulation. We tested whether foam influenced the outcome of sperm competition by varying foam state and mating order in competitive matings. We found that the presence of foam from one male decreased the relative fertilization success of a rival, and that foam from a given male increased the probability he obtained any fertilizations. Mating order also affected competitive success. Males mated first fertilized proportionally more eggs in a clutch and had more matings with any fertilizations than subsequent males. We conclude that the function of foam in sperm competition is mediated through the positive interaction of foam with a male's sperm, and we speculate whether the benefit is achieved through improving sperm storage, fertilizing efficiency or retention. Our results suggest males can evolve complex strategies to gain fertilizations at the expense of rivals as foam, a copulatory fluid not required for fertilization, nevertheless, has important effects on reproductive performance under competition.  相似文献   

9.
10.
11.
The pattern of sperm predominance in doubly mated female crickets, Gryllodes supplicans, was investigated using a radiation-sterility technique. Female G. supplicans made significant use of sperm from both males in fertilizing eggs; overall, first males to mate enjoyed a small advantage, fertilizing about 60% of the offspring produced subsequent to the second mating. The combined use of the sperm of both males in fertilizing eggs occurred soon after the second mating; evidently, mixing of ejaculates within a female's spermatheca does occur. Male G. supplicans provide females with a nuptial gift, the spermatophylax, which influences the time at which a female removes the externally attached sperm-ampulla; this in turn determines the quantity of sperm that is transferred. Moreover, the degree of sperm precedence achieved by a male may be positively related to the time at which the female removes his sperm ampulla. Thus males, by feeding females, ensure not only that a sufficient number of sperm are transferred to fertilize all of a female's eggs, but also may increase the certainty of their paternity. In mating systems in which females control sperm transfer and paternity is influenced by numbers of sperm (i.e., numerical sperm competition), an increase in prezygotic investment in females may be an adaptive male response.  相似文献   

12.
13.
Manipulation of ejaculates is believed to be an important avenue of female choice throughout the animal kingdom, but evidence of its importance to sexual selection remains scarce. In crickets, such manipulation is manifest in the premature removal of the externally attached spermatophore, which may afford females an important means of postcopulatory mate choice. We tested the hypothesis that premature spermatophore removal contributes significantly to intraspecific variation in sperm precedence by (1) experimentally manipulating spermatophore attachment durations of competing male Gryllodes sigillatus and (2) employing protein electrophoresis to determine the paternity of doubly mated females. The relative spermatophore attachment durations of competing males had a significant influence on male paternity, but the pattern of sperm precedence deviated significantly from the predictions of an ideal lottery. Instead, paternity data and morphological evidence accorded best with a model of partial sperm displacement derived here. Our model is similar to a displacement model of Parker et al. in that sperm of the second male mixes instantaneously with that of the first throughout the displacement process, but the novel feature of our model is that the number of sperm displaced is only a fraction of the number of sperm transferred by the second male. Regardless of the underlying mechanism, female G. sigillatus can clearly alter the paternity of their offspring through their spermatophore-removal behavior, and employ such cryptic choice in favoring larger males and those providing larger courtship food gifts. We discuss how female control of sperm transfer and intraspecific variation in sperm precedence may be important precursors to the evolution of gift giving in insects.  相似文献   

14.
The independent evolution of the sexes may often be constrained if male and female homologous traits share a similar genetic architecture. Thus, cross-sex genetic covariance is assumed to play a key role in the evolution of sexual dimorphism (SD) with consequent impacts on sexual selection, population dynamics, and speciation processes. We compiled cross-sex genetic correlations ( r MF) estimates from 114 sources to assess the extent to which the evolution of SD is typically constrained and test several specific hypotheses. First, we tested if r MF differed among trait types and especially between fitness components and other traits. We also tested the theoretical prediction of a negative relationship between r MF and SD based on the expectation that increases in SD should be facilitated by sex-specific genetic variance. We show that r MF is usually large and positive but that it is typically smaller for fitness components. This demonstrates that the evolution of SD is typically genetically constrained and that sex-specific selection coefficients may often be opposite in sign due to sub-optimal levels of SD. Most importantly, we confirm that sex-specific genetic variance is an important contributor to the evolution of SD by validating the prediction of a negative correlation between r MF and SD.  相似文献   

15.
16.
Female remating rate dictates the level of sperm competition in a population, and extensive research has focused on how sperm competition generates selection on male ejaculate allocation. Yet the way ejaculate allocation strategies in turn generate selection on female remating rates, which ultimately influence levels of sperm competition, has received much less consideration despite increasing evidence that both mating itself and ejaculate traits affect multiple components of female fitness. Here, we develop theory to examine how the effects of mating on female fertility, fecundity and mortality interact to generate selection on female remating rate. When males produce more fertile ejaculates, females are selected to mate less frequently, thus decreasing levels of sperm competition. This could in turn favour decreased male ejaculate allocation, which could subsequently lead to higher female remating. When remating simultaneously increases female fecundity and mortality, females are selected to mate more frequently, thus exacerbating sperm competition and favouring male traits that convey a competitive advantage even when harmful to female survival. While intuitive when considered separately, these predictions demonstrate the potential for complex coevolutionary dynamics between male ejaculate expenditure and female remating rate, and the correlated evolution of multiple male and female reproductive traits affecting mating, fertility and fecundity.  相似文献   

17.
We constructed a model for the evolution of sexual isolation by extending Lande's (1981) model of sexual selection. The model predicts that asymmetric sexual isolation is a transient phenomenon, characteristic of intermediate stages of divergence in sexually selected traits. Unlike the Kaneshiro (1976, 1980) proposal, our model does not depend upon drift and the loss of courtship elements to produce asymmetries in sexual isolation. According to our model, the direction of evolution cannot be predicted from asymmetry in sexual isolation. We tested some features of the model using data from an experimental study of sexual isolation in the salamander Desmognathus ochrophaeus. We tested for sexual isolation between 12 allopatric populations and found significant asymmetry in sexual isolation in about a quarter of the test cases. The highest degrees of asymmetry were associated with intermediate levels of divergence. A curvilinear relationship between isolation asymmetry and divergence was predicted by our model and was supported by statistical analysis of the salamander data.  相似文献   

18.
Secondary sexual traits increase male fitness, but may be maladaptive in females, generating intralocus sexual conflict that is ameliorated through sexual dimorphism. Sexual selection on males may also lead some males to avoid expenditure on secondary sexual traits and achieve copulations using alternative reproductive tactics (ARTs). Secondary sexual traits can increase or decrease fitness in males, depending on which ART they employ, generating intralocus tactical conflict that can be ameliorated through male dimorphism. Due to the evolutionary forces acting against intralocus sexual and tactical conflicts, male dimorphism could coevolve with sexual dimorphism, a hypothesis that we tested by investigating these dimorphisms across 48 harvestman species. Using three independently derived phylogenies, we consistently found that the evolution of sexual dimorphism was correlated with that of male dimorphism, and suggest that the major force behind this relationship is the similarity between selection against intralocus sexual conflict and selection against intralocus tactical conflict. We also found that transitions in male dimorphism were more likely in the presence of sexual dimorphism, indicating that if a sexually selected trait arises on an autosome and is expressed in both sexes, its suppression in females probably evolves earlier than its suppression in small males that adopt ARTs.  相似文献   

19.
20.
芹菜子的超临界CO2流体萃取物的化学成分研究   总被引:10,自引:0,他引:10  
本文采用GC和GC-MS技术,就芹菜子的超临界CO2流体萃取法(SFE-CO2)精油和水汽蒸馏法(SD)精油的化学组成作了对比研究。结果表明,SD法精油的主要成分为单萜烯烃类物质,而SFE-CO2法精油为苯并呋喃酮类化合物。共有32种化合物被鉴定,其中两种为首次在芹子油中被发现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号