首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the role of natural selection in the evolution of floral traits has been of great interest to biologists since Darwin, studies of selection on floral traits through differences in lifetime fitness have been rare. We measured selection acting on flower number, flower size, stigma exsertion, and ovule number per flower using field data on lifetime female fitness (seed production) in wild radish, Raphanus raphanistrum. The patterns of selection were reasonably consistent across three field seasons, with strong directional selection for increased flower production in all three years, weaker selection for increased ovule number per flower in two years, and selection for increased flower size in one year. The causes of the selection were investigated using path analysis combined with multiplicative fitness components. Increased flower production increased fruit production directly, and increased numbers of ovules per flower increased the number of seeds per fruit in all three years; pollinator visitation did not influence either of these fitness components. Increased flower size was associated with increases in both the number of fruit and the number of seeds per fruit in one year, with the latter relationship being stronger. Total lifetime seed production was affected more strongly by differences in fruit production than by differences in either the number of seeds per fruit or the proportion of fertilized seeds that were viable, but all three fitness components were positively correlated with total seed production.  相似文献   

2.
It has often been suggested that selection on floral traits in hermaphroditic plants should occur primarily through differences in male fitness. However, measurements of selection on floral traits through differences in lifetime male fitness have been lacking. We measured selection on a variety of wild radish floral traits using lifetime male fitness measures derived from genetic paternity analysis. These male fitness estimates were then combined with estimates of lifetime female fitness of the same plants to produce measurements of selection based on lifetime total fitness. Contrary to the prediction above, there was no strong evidence for selection on floral morphology through male fitness differences in any of the three years of the study, but there was strong selection for increased flower size through female fitness differences in one year. The main determinant of both male and female fitness in all years was flower number; this lead to moderately positive correlations between male and female fitness in all three years.  相似文献   

3.
The use of regression techniques for estimating the direction and magnitude of selection from measurements on phenotypes has become widespread in field studies. A potential problem with these techniques is that environmental correlations between fitness and the traits examined may produce biased estimates of selection gradients. This report demonstrates that the phenotypic covariance between fitness and a trait, used as an estimate of the selection differential in estimating selection gradients, has two components: a component induced by selection itself and a component due to the effect of environmental factors on fitness. The second component is shown to be responsible for biases in estimates of selection gradients. The use of regressions involving genotypic and breeding values instead of phenotypic values can yield estimates of selection gradients that are not biased by environmental covariances. Statistical methods for estimating the coefficients of such regressions, and for testing for biases in regressions involving phenotypic values, are described.  相似文献   

4.
Abstract.— The ornamentation and displays on which sexual attractiveness and thus mating success are based may be complex and comprise several traits. Predicting the outcome of sexual selection on such complex phenotypes requires an understanding of both the direct operation of selection on each trait and the indirect consequences of selection operating directly on genetically correlated traits. Here we report the results of a quantitative genetic analysis of the ornamentation, sexual attractiveness, and mating success of male guppies (Poecilia reticulata). We analyze male ornamentation both from the point of view of single ornamental traits (e.g., the area of each color) and of composite measures of the way the entire pattern is likely to be perceived by females (e.g., the mean and contrast in chroma). We demonstrate that there is substantial additive genetic variation in almost all measures of male ornamentation and that much of this variation may be Y linked. Attractiveness and mating success are positively correlated at the phenotypic and genetic level. Orange area and chroma, the area of a male's tail, and the color contrast of his pattern overall are positively correlated with attractiveness and/or mating success at the phenotypic and genetic levels. Using attractiveness and mating success as measures of fitness, we estimate gradients of linear directional sexual selection operating on each male trait and use equations of multivariate evolutionary change to predict the response of male ornamentation to this sexual selection. From these analyses, we predict that indirect selection may have important effects on the evolution of male guppy color patterns.  相似文献   

5.
I used phenotypic selection analysis to test the prediction from functional and comparative studies of plants that smaller leaves and more efficient water use are adaptive in drier environments. I measured selection gradients on leaf size and instantaneous water-use efficiency (a measure of carbon gain per unit water loss) in experimental populations of Cakile edentula var. lacustris placed into wet and dry environments in the field. Linear and nonlinear selection differed significantly between the two environments as predicted. Water-use efficiency was selected to be higher, and leaf area was selected toward a small intermediate optimum, in the dry environment. There was also significant positive correlational selection on water-use efficiency and leaf size, suggesting that the optimum leaf size in the dry environment is greater for plants with higher water-use efficiency. In contrast, neither leaf size nor water-use efficiency were selected in the wet environment, though larger leaves resulted in greater vegetative biomass. Path analysis of the linear selection gradients found that water-use efficiency affected plant fitness primarily because it increased vegetative biomass, as suggested by the hypotheses about the function of physiological traits. These results were not only consistent with the functional hypotheses but also with the observed genetic differentiation in water-use efficiency and leaf size between wet and dry site populations.  相似文献   

6.
Morphologically variable F2 genotypes derived from hybridization of coastal and inland ecotypes of the annual plant Diodia teres were used to identify selection on morphological traits in the natural habitat of each ecotype. These ecotypes occur in very different habitats, and have evolved pronounced morphological differentiation. Selection analysis can suggest whether present patterns of selection can explain morphological differences between ecotypes. F2 genotypes were characterized morphologically, clonally replicated, and transplanted into the habitat of each ecotype. Selection was measured on six morphological traits. Directional and stabilizing selection occurred on many traits; direction and strength of selection varied sharply at different stages of growth, as revealed by a path-analysis approach that divided selection into a set of independent components. Directional selection favored traits of the native population at the coastal habitat, but less so at the inland habitat. Selection was of sufficient strength to create the observed morphological differences between ecotypes in 25–100 generations, given constant selection and sufficient genetic variation. In effects on fitness, most traits were neither independent nor consistently interactive with other traits. Rather, many traits entered into strong but evanescent interactions affecting particular components of fitness. Observed interactions did not support the hypothesis that the morphology of each ecotype was functionally integrated to a high degree.  相似文献   

7.
The structured linear model (SLM) is generalized to treat selection on multiple, correlated characters. Four different causes of phenotypic correlations are distinguished by the SLM: environmental covariance, identity disequilibrium, pleiotropy, and linkage disequilibrium. Each is characterized by distinct variables because they have different implications for character evolution. Correlations due to identity disequilibrium and linkage disequilibrium depend on both the mating system and the selection regime. As a consequence, they will evolve rapidly under selection. Correlations due to pleiotropy or environmental factors will evolve more slowly and are characterized by parameters that can be estimated from comparisons among relatives. These parameters include several novel “inbreeding covariance components” that emerge from the interaction of inbreeding and genetic dominance. Although data are limited, current estimates suggest that the expression of these components may substantially alter the pattern of multitrait evolution in self-fertilizing populations.  相似文献   

8.
It is very difficult to relate macroevolutionary patterns to the microevolutionary processes described by quantitative-genetic models. Quantitative-genetic parameters are statistical abstractions. Their long-term significance and evolution might be understood if they can be related to development, physiology, and other biological properties. Most continuous traits are composites of other traits that may contribute differentially to selection response and long-term divergence. The operation of selection on continuous traits can be indirect, with intermediate optima caused by correlated fitness components. Few realistic models are available, and heritable maternal effects can further complicate selection response. Examples involving allometry of brain and body size in mammals suggest that prenatal and postnatal growth have contributed differently to body-size evolution, with different correlated changes in brain size. Several different models could explain these patterns, and interpretation is further complicated by statistical difficulties in comparative biology. Quantitative-genetic models may become more informative and predictive if variation in their parameters can be explained by developmental and other biological processes that have been shaped by the previous history of the population.  相似文献   

9.
Understanding the mechanics of adaptive evolution requires not only knowing the quantitative genetic bases of the traits of interest but also obtaining accurate measures of the strengths and modes of selection acting on these traits. Most recent empirical studies of multivariate selection have employed multiple linear regression to obtain estimates of the strength of selection. We reconsider the motivation for this approach, paying special attention to the effects of nonnormal traits and fitness measures. We apply an alternative statistical method, logistic regression, to estimate the strength of selection on multiple phenotypic traits. First, we argue that the logistic regression model is more suitable than linear regression for analyzing data from selection studies with dichotomous fitness outcomes. Subsequently, we show that estimates of selection obtained from the logistic regression analyses can be transformed easily to values that directly plug into equations describing adaptive microevolutionary change. Finally, we apply this methodology to two published datasets to demonstrate its utility. Because most statistical packages now provide options to conduct logistic regression analyses, we suggest that this approach should be widely adopted as an analytical tool for empirical studies of multivariate selection.  相似文献   

10.
Restriction-modification (R-M) was discovered because it provides bacteria with immunity to phage infection. But, is phage-mediated selection the sole mechanism responsible for the evolution and maintenance of these ubiquitous and multiply evolved systems? In an effort to answer this question, we have performed experiments with laboratory populations of E. coli and phage and computer simulations. We consider two ecological situations whereby phage-mediated selection could favor R-M immunity; i) when bacteria with a novel R-M system invade communities of phage-sensitive bacteria in which there are one or more species of phage, and ii) when bacteria colonize bacterial-free habitats in which phage are present. The results of our experiments indicate that in established communities of bacteria and phage, the advantage R-M provides an invading population of bacteria is ephemeral. Within short order, mutants resistant (refractory) to the phage evolve in the dominant population and subsequently in the invading population. The outcome of competition then depends on the relative fitness of the resistant states of these bacterial clones, rather than R-M. As a consequence of sequential selection for independent mutants, this rapid evolution of resistance occurs even when two and three species of phage are present. While in our experiments resistance also evolved when bacteria colonized new habitats in which phage were present, a novel R-M system greatly augmented the likelihood of their becoming established. We interpret the results of this study as support for the hypothesis that the latter, colonization selection, may play an important role in the evolution and maintenance of restriction-modification. However, we also see these results and other observations we discuss as questioning whether protection against phage is the unique biological role of restriction-modification.  相似文献   

11.
Pollination syndromes suggest that convergent evolution of floral traits and trait combinations reflects similar selection pressures. Accordingly, a pattern of selection on floral traits is expected to be consistent with increasing the attraction and pollen transfer of the important pollinator. We measured individual variation in six floral traits and yearly and lifetime total plant seed and fruit production of 758 plants across nine years of study in natural populations of Ruby-Throated Hummingbird-pollinated Silene virginica. The type, strength, and direction of selection gradients were observed by year, and for two cohorts selection was estimated through lifetime maternal fitness. Positive directional selection was detected on floral display height in all years of study and stigma exsertion in all years but one. Significant quadratic and correlational selection gradients were rare. However, a canonical analysis of the gamma matrix indicated nonlinear selection was common; if significant curvature was detected it was convex with one exception. Our analyses demonstrated selection favored trait combinations and the integration of floral features of attraction and pollen transfer efficiency that were consistent with the hummingbird pollination syndrome.  相似文献   

12.
Sexual size dimorphism (SSD) is often attributed to sexual selection, particularly when males are the larger sex. However, sexual selection favoring large males is common even in taxa where females are the larger sex, and is therefore not a sufficient explanation of patterns of SSD. As part of a more extensive study of the evolution of SSD in water striders (Heteroptera, Gerridae), we examine patterns of sexual selection and SSD in 12 populations of Aquarius remigis. We calculate univariate and multivariate selection gradients from samples of mating and single males, for two sexually dimorphic traits (total length and profemoral width) and two sexually monomorphic traits (mesofemoral length and wing form). The multivariate analyses reveal strong selection favoring larger males, in spite of the female-biased SSD for this trait, and weaker selection favoring aptery and reduced mesofemoral length. Selection is weakest on the most dimorphic trait, profemoral width, and is stabilizing rather than directional. The pattern of sexual selection on morphological traits is therefore not concordant with the pattern of SSD. The univariate selection gradients reveal little net selection (direct + indirect) on any of the traits, and suggest that evolution away from the plesiomorphic pattern of SSD is constrained by antagonistic patterns of selection acting on this suite of positively correlated morphological traits. We hypothesize that SSD in A. remigis is not in equilibrium, a hypothesis that is consistent with both theoretical models of the evolution of SSD and our previous studies of allometry for SSD. A negative interpopulation correlation between the intensity of sexual selection and the operational sex ratio supports the hypothesis that, as in several other water strider species, sexual selection in A. remigis occurs through generalized female reluctance rather than active female choice. The implications of this for patterns of sexual selection are discussed.  相似文献   

13.
Four types of laboratory populations of the bean weevil (Acanthoscelides obtectus) have been developed to study the effects of density-dependent and age-specific selection. These populations have been selected at high (K) and low larval densities (r) as well as for reproduction early (Y) and late (O) in life. The results presented here suggest that the r- and K-populations (density-dependent selection regimes) have differentiated from each other with respect to the following life-history traits: egg-to-adult viability at high larval density (K > r), preadult developmental time (r > K), body weight (r > K), late fecundity (K > r), total realized fecundity (r > K), and longevity of males (r > K). It was also found that the following traits responded in statistically significant manner in populations subjected to different age-specific selection regimes: egg-to-adult viability (O > Y), body weight (O > Y), early fecundity (Y > O), late fecundity (O > Y), and longevity of females and males (O > Y). Although several life-history traits (viability, body weight, late fecundity) responded in similar manner to both density-dependent and age-specific selection regimes, it appears that underlying genetic and physiological mechanisms responsible for differentiation of the r/K and Y/O populations are different. We have also tested quantitative genetic basis of the bean weevil life-history traits in the populations experiencing density-dependent and age-specific selection. Among the traits traded-off within age-specific selection regimes, only early fecundity showed directional dominance, whereas late fecundity and longevity data indicated additive inheritance. In contrast to age-specific selecton regimes, three life-history traits (developmental time, body size, total fecundity) in the density-sependent regimes exhibited significant dominance effects. Lastly, we have tested the congruence between short-term and long-term effects of larval densities. The comparisons of the outcomes of the r/K selection regimes and those obtained from the low- and high-larval densities revealed that there is no congruence between the selection results and phenotypic plasticity for the analyzed life-history traits in the bean weevil.  相似文献   

14.
Differences in the relative diversification rates of species with variant traits are known as species selection. Species selection can produce a macroevolutionary change in the frequencies of traits by changing the relative number of species possessing each trait over time. But species selection is not the only process that can change the frequencies of traits, phyletic microevolution of traits within species and phylogenetic trait evolution among species, the tempo and mode of microevolution can also change trait frequencies. Species selection, phylogenetic, and phyletic processes can all contribute to large‐scale trends, reinforcing or canceling each other out. Even more complex interactions among macroevolutionary processes are possible when multiple covarying traits are involved. Here I present a multilevel macroevolutionary framework that is useful for understanding how macroevolutionary processes interact. It is useful for empirical studies using fossils, molecular phylogenies, or both. I illustrate the framework with the macroevolution of coloniality and photosymbiosis in scleractinian corals using a time‐calibrated molecular phylogeny. I find that standing phylogenetic variation in coloniality and photosymbiosis deflects the direction of macroevolution from the vector of species selection. Variation in these traits constrains species selection and results in a 200 million year macroevolutionary equilibrium.  相似文献   

15.
Phenotypic variation is ubiquitous in nature and a precondition for adaptive evolution. However, theory predicts that the extent of phenotypic variation should decrease with increasing strength of selection on a trait. Comparative analyses of trait variability have repeatedly used this expectation to infer the type or strength of selection. Yet, the suggested influence of selection on trait variability has rarely been tested empirically. In the present study, I compare estimates of sexual selection strength and trait variability from published data. I constricted the analysis to acoustic courtship traits in amphibians and insects with known variability and corresponding results of female binary choice experiments on these traits. Trait variability and strength of sexual selection were significantly correlated, and both were correlated with signal duration. Because traits under stronger selection had lower variation even after the effect of signal duration was eliminated, I conclude that traces of the strength of selection can be observed with respect to variation of acoustic signaling traits in insects and amphibians. The analysis also shows that traits under stabilizing selection have significantly lower phenotypic variability than traits under directional selection.  相似文献   

16.
17.
We studied the relative role of genetic determination versus plastic response for traits involved in ecological adaptation of two ecotypes of Littorina saxatilis living at different shore levels. To investigate the magnitude of the plastic response across ontogeny, we compared morphological data from individuals grown in the laboratory and taken from the wild at three developmental stages: shelled embryos, juveniles, and adults. The results indicate that most shell shape variation (72–99%) in adaptive traits (globosity and aperture of the shell) is explained by the ecotype irrespective of the growth environment, suggesting that direct genetic determination is the main factor responsible for the process of adaptation in the wild. There was a tendency for the contribution of plasticity to increase over ontogeny but, in general, the direction of the plastic response did not suggest that this was adaptive.  相似文献   

18.
In every generation, the mean fitness of populations increases because of natural selection and decreases because of mutations and changes in the environment. The magnitudes of these effects can be measured in two ways: either directly, by comparing the fitnesses of selected and unselected populations, or indirectly, by measuring the additive variance of fitness and making use of the fundamental theorem of natural selection. The available data suggest that the amount by which natural selection increases mean fitness each generation (or degradation decreases mean fitness) will usually be between 0.1% and 30%; more tentatively, it is suggested that values will typically fall between 1% and 10%. These values can be used to set an upper limit of 5%–10% on the genetic advantage of mate choice.  相似文献   

19.
Social selection is presented here as a parallel theory to sexual selection and is defined as a selective force that occurs when individuals change their own social behaviors, responding to signals sent by conspecifics in a way to influence the other individuals' fitness. I analyze the joint evolution of a social signal and behavioral responsiveness to the signal by a quantitative-genetic model. The equilibria of average phenotypes maintained by a balance of social selection and natural selection and their stability are examined for two alternative assumptions on behavioral responsiveness, neutral and adaptive. When behavioral responsiveness is neutral on fitness, a rapid evolution by runaway selection occurs only with enough genetic covariance between the signal and responsiveness. The condition for rapid evolution also depends on natural selection and the number of interacting individuals. When signals convey some information on signalers (e.g., fighting ability), behavioral responsiveness is adaptive such that a receiver's fitness is also influenced by the signal. Here there is a single point of equilibrium. The equilibrium point and its stability do not depend on the genetic correlation. The condition needed for evolution is that the signal is beneficial for receivers, which results from reliability of the signal. Frequency-dependent selection on responsiveness has almost no influence on the equilibrium and the rate of evolution.  相似文献   

20.
Canalization is an abstract term that describes unknown developmental mechanisms that reduce phenotypic variation. A trait can be canalized against environmental perturbations (e.g., changes in temperature or nutrient quality), or genetic perturbations (e.g., mutations or recombination); this paper is about genetic canalization. Stabilizing selection should improve the canalization of traits, and the degree of canalization should be positively correlated with the traits' impact on fitness. Experiments testing this idea should measure the canalization of a series of traits whose impact on fitness is known or can be inferred, exclude differences among traits in the number of loci and alleles segregating as an explanation for the pattern of variability found, and distinguish between canalization against genetic and environmental variation. These conditions were met by three experiments within which the variation of fitness components among Drosophila melanogaster lines was measured and among which the genetic contribution to the variation among lines was clearly different. The canalization of the traits increased with their impact on fitness and did not depend on the degree of genetic differences among lines. That the flies used had been transformed by a P-element insert suggests that canalization was also effective against novel genetic variation. The results reported here cannot be explained by the classical hypothesis of reduction in the number of loci segregating for traits with greater impact on fitness and confirm that traits with greater impact on fitness are more strongly canalized. This pattern of canalization reveals an underappreciated role for development in microevolution. There is differential genetic canalization of fitness components in D. melanogaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号