首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

2.
A detailed understanding of the population dynamics of many amphibian species is lacking despite concerns about declining amphibian biodiversity and abundance. This paper explores temporal patterns of occupancy and underlying extinction and colonization dynamics in a regionally imperiled amphibian species, the Northern leopard frog (Lithobates pipiens) in Alberta. Our study contributes to elucidating regional occupancy dynamics at northern latitudes, where climate extremes likely have a profound effect on seasonal occupancy. The primary advantage of our study is its wide geographic scale (60,000 km2) and the use of repeat visual surveys each spring and summer from 2009–2013. We find that occupancy varied more dramatically between seasons than years, with low spring and higher summer occupancy. Between spring and summer, colonization was high and extinction low; inversely, colonization was low and extinction high over the winter. The dynamics of extinction and colonization are complex, making conservation management challenging. Our results reveal that Northern leopard frog occupancy was constant over the last five years and thus there is no evidence of decline or recovery within our study area. Changes to equilibrium occupancy are most sensitive to increasing colonization in the spring or declining extinction in the summer. Therefore, conservation and management efforts should target actions that are likely to increase spring colonization; this could be achieved through translocations or improving the quality or access to breeding habitat. Because summer occupancy is already high, it may be difficult to improve further. Nevertheless, summer extinction could be reduced by predator control, increasing water quality or hydroperiod of wetlands, or increasing the quality or quantity of summer habitat.  相似文献   

3.
The influence of habitat quality and population density on occupancy dynamics may surpass that of traditional metrics of area and isolation, but often this is not considered explicitly in studies of spatially structured populations. In landscapes that are not easily characterized as binary habitat/non‐habitat (e.g. variegated landscapes), this influence may be even more important and occur at both local and landscape levels. It follows that occupancy dynamics may be driven by disparate processes depending on how extinction or colonization relate to habitat quality and population density. We examined the relative influence of area, structural isolation, habitat quality, local population density, and neighborhood population density (i.e. population density in the landscape around a site) on the probability of extinction and colonization of snowshoe hare Lepus americanus across an expansive forest mosaic landscape (encompassing the northern third of Idaho). Habitat quality and population density were highly influential in determining extinction and colonization, whereas patch area and isolation were much less important. Sites with heavier vegetative cover at the site or landscape‐level were more likely to be colonized and less likely to go extinct, and sites with greater local population density in the previous time step had lower probability of extinction. Sites embedded in high density neighborhoods also were less likely to go extinct, but not more likely to be colonized. We found a significant interaction between local and neighborhood population density on extinction in 1 yr, suggesting that the strength of demographic rescue may vary dependent on local site densities. Our results add to a growing literature showing that factors outside of structural metrics of area and isolation are important drivers of occupancy dynamics. Given the multi‐scaled influence of habitat quality and population density on occupancy dynamics, our work also indicates that research on snowshoe hare must extend beyond simply assessing local factors to understand the spatial dynamics of populations.  相似文献   

4.
R. A. Briers  P. H. Warren 《Oecologia》2000,123(2):216-222
Simple metapopulation models assume that local populations occur in patches of uniform quality habitat separated by non-habitat. However field metapopulations tend to show considerable spatial and temporal variation in patch quality, and hence probability of occupancy. This may have implications for the adequacy of simple metapopulation models in describing and predicting regional population dynamics of natural systems. This study investigated the effects of habitat characteristics on landscape-scale occupancy dynamics of two species of backswimmer (Notonecta, Hemiptera: Notonectidae) in small freshwater ponds. The results demonstrated clear links between habitat, pond occupancy and population turnover, particularly local extinction. There were considerable changes in the habitat of individual ponds between years, but local changes were not spatially correlated and the frequency distribution of habitat conditions at the landscape level remained similar in different years. Stable occupancy levels of Notonecta species appears to result from a balance of the rates of creation and loss of suitable habitat due to spatially uncorrelated habitat change. Systems such as this, where turnover is driven by habitat dynamics, demonstrate the potential value of incorporating the dynamics of habitat change into metapopulation models. Such developments are likely to improve predictions of landscape-scale occupancy dynamics, whilst also allowing patch-level predictions of occupancy, based on local habitat conditions. Received: 18 August 1999 / Accepted: 3 December 1999  相似文献   

5.
Changes in site occupancy across habitat patches have often been attributed to landscape features in fragmented systems, particularly when considering metapopulations. However, failure to include habitat quality of individual patches can mask the relative importance of local scale features in determining distributional changes. We employed dynamic occupancy modeling to compare the strength of local habitat variables and metrics of landscape patterns as drivers of metapopulation dynamics for a vulnerable, high‐elevation species in a naturally fragmented landscape. Repeat surveys of Bicknell's thrush Catharus bicknelli presence/non‐detection were conducted at 88 sites across Vermont, USA in 2006 and 2007. We used an organism‐based approach, such that at each site we measured important local‐scale habitat characteristics and quantified landscape‐scale features using a predictive habitat model for this species. We performed a principal component analysis on both the local and landscape features to reduce dimensionality. We estimated site occupancy, colonization, and extinction probabilities while accounting for imperfect detection. Univariate, additive, and interaction models of local habitat and landscape context were ranked using AICc scores. Both local and landscape scales were important in determining changes in occupancy patterns. An interaction between scales was detected for occupancy dynamics indicating that the relationship of the parameters to local‐scale habitat conditions can change depending on the landscape context and vice versa. An increase in both landscape‐ and local‐scale habitat quality increased occupancy and colonization probability while decreasing extinction risk. Colonization and extinction were both more strongly influenced by local habitat quality relative to landscape patterns. We also identified clear, qualitative thresholds for landscape‐scale features. Conservation of large habitat patches in high‐cover landscapes will help ensure persistence of Bicknell's thrushes, but only if local scale habitat quality is maintained. Our results highlight the importance of incorporating information beyond landscape characteristics when investigating patch occupancy patterns in metapopulations.  相似文献   

6.
Extinction, colonization, and species occupancy in tidepool fishes   总被引:1,自引:0,他引:1  
Despite the increasing sophistication of ecological models with respect to the size and spatial arrangement of habitat, there is relatively little empirical documentation of how species dynamics change as a function of habitat size and the fraction of habitat occupied. In an assemblage of tidepool fishes, I used maximum-likelihood estimation to test whether models which included habitat size provided a better fit to empirical data on extinction and colonization probabilities than models that assumed constant probabilities over all habitats. I found species differences in how extinction and colonization probabilities scaled with habitat size (and hence local population size). However, there was little evidence for a relationship between extinction and colonization probabilities and the fraction of occupied tidepools, as assumed in simple metapopulation models. Instead, colonization and extinction were independent of the fraction of occupied tidepools, favoring a MacArthur-Wilson island-mainland model. When I incorporated declines in extinction probability with tidepool volume in a simple simulation model, I found that predicted occupancy could change greatly, especially when colonization was low. However, the predicted fraction of occupied patches in the simulation model changed little when I incorporated the range of values reported here for extinction and colonization and the rate at which they scale with habitat size. Quantifying extinction and colonization patterns of natural populations is fundamental to understanding how species are distributed spatially and whether metapopulation models of species occupancy provide explanatory power for field populations. Received: 14 March 1997 / Accepted: 21 September 1997  相似文献   

7.
Anthropogenic habitat fragmentation often restricts gene flow and results in small populations that are at risk of inbreeding. However, some endangered species naturally occupy patchy habitat where local population extinction and recolonization are normal. We investigated population fragmentation in the range‐restricted New Zealand small‐scaled skink (Oligosoma microlepis), documenting changes in habitat occupancy and analyzing mitochondrial, microsatellite, and morphological variation sampled across the geographical range of the species (approximately 100 km2). Small‐scaled skinks have a strong preference for rocky outcrops that exist in a mosaic of other habitat types. A metapopulation structure was indicated by both local extinction and colonization of new sites. We found relatively high mtDNA nucleotide site diversity within this narrow range (π = 0.004; 16S), evidence of inter‐patch gene flow, and no statistical support for inbreeding. Gene flow was limited by geographical distance, although the existence of pasture between habitat patches apparently has not prevented skink dispersal. Generalized linear models indicated an association between body size and location suggesting a local environmental influence on phenotype. Prior to human‐induced habitat modification, native forest probably separated preferred sites and, less than 2000 years ago, volcanic activity devastated much of the area currently occupied by O. microlepis. This skink appears able to re‐establish populations if other human‐linked factors such as agricultural intensification and introduced predators are limited. Although in contrast to expectations for a scarce and localized species living in a highly modified landscape, this lizard may have previously adapted to a dynamic, mosaic environment mediated by volcanism.  相似文献   

8.
Mark P. Johnson 《Oikos》2000,88(1):67-74
The classical view of metapopulations relates the regional abundance of a species to the balance between the extinction and colonization dynamics of identical local populations. Species in successional landscapes may represent the most appropriate examples of classical metapopulations. However, Levins‐type metapopulation models do not explicitly separate population loss due to successional habitat change from other causes of extinction. A further complication is that the chance of population loss due to successional habitat change may be related to the age of a patch. I developed simple patch occupancy models to include succession and included consideration of patch age structure to address two related questions: what are the implications of changes in patch demographic rates and when is a move to a structured patch occupancy model justified? Age‐related variation in patch demography could increase or decrease the equilibrium fraction of the available habitat occupied by a species when compared to the predictions of an unstructured model. Metapopulation persistence was enhanced when the age class of patches with the highest species occupancy suffered relatively low losses to habitat succession. Conversely, when the age class of patches with the highest species occupancy also had relatively high successional loss rates, extinction thresholds were higher that would be predicted by a simple unstructured model. Hence age‐related variation in patch successional rate introduces biases into the predictions of simple unstructured models. Such biases can be detected from field surveys of the fraction of occupied and unoccupied patches in each age class. Where a bias is demonstrated, unstructured models will not be adequate for making predictions about the effects of changing parameters on metapopulation size. Thinking in successional terms emphasizes how landscapes might be managed to enhance or reduce the patch occupancy by any particular metapopulation  相似文献   

9.
Population abundance estimates using predictive models are important for describing habitat use and responses to population-level impacts, evaluating conservation status of a species, and for establishing monitoring programs. The golden-cheeked warbler (Setophaga chrysoparia) is a neotropical migratory bird that was listed as federally endangered in 1990 because of threats related to loss and fragmentation of its woodland habitat. Since listing, abundance estimates for the species have mainly relied on localized population studies on public lands and qualitative-based methods. Our goal was to estimate breeding population size of male warblers using a predictive model based on metrics for patches of woodland habitat throughout the species' breeding range. We first conducted occupancy surveys to determine range-wide distribution. We then conducted standard point-count surveys on a subset of the initial sampling locations to estimate density of males. Mean observed patch-specific density was 0.23 males/ha (95% CI = 0.197–0.252, n = 301). We modeled the relationship between patch-specific density of males and woodland patch characteristics (size and landscape composition) and predicted patch occupancy. The probability of patch occupancy, derived from a model that used patch size and landscape composition as predictor variables while addressing effects of spatial relatedness, best predicted patch-specific density. We predicted patch-specific densities as a function of occupancy probability and estimated abundance of male warblers across 63,616 woodland patches accounting for 1.678 million ha of potential warbler habitat. Using a Monte Carlo simulation, our approach yielded a range-wide male warbler population estimate of 263,339 (95% CI: 223,927–302,620). Our results provide the first abundance estimate using habitat and count data from a sampling design focused on range-wide inference. Managers can use the resulting model as a tool to support conservation planning and guide recovery efforts. © 2012 The Wildlife Society.  相似文献   

10.
In western North America, riparian vegetation is being lost in response to changes in land use and climate. We examined the relationship between obligate riparian species of songbirds and environmental and riparian habitat factors in three mountain ranges in the central Great Basin (Nevada, U.S.A.). We estimated patterns of occupancy, colonization, and local extinction for three species detected during the breeding seasons of 2001–2006: MacGillivray's Warbler ( Oporornis tolmiei ), Broad-tailed Hummingbird ( Selasphorus platycercus ), and Song Sparrow ( Melospiza melodia ). We used model selection and multimodel inference to identify functional relationships between the occupancy of each species and multiple habitat variables, including the structure and composition of riparian vegetation. Among all years and species, we observed considerable variation in estimates of detection probability. For MacGillivray's Warbler, annual occupancy rates were relatively constant. Occupancy rates for Broad-tailed Hummingbird and Song Sparrow increased during the first 3–4 years of our study and then decreased. Each species experienced its highest rate of local extinction during 2005. Different components of riparian vegetation were good predictors of occupancy, colonization, and local extinction for each species. Typically, elevation and latitude also were strong predictors. Establishing functional relationships between avifauna and vegetation is essential to predicting how land-cover change may affect the occupancy of riparian areas and other habitats for birds. The conservation of breeding birds in riparian areas in the central Great Basin is more likely to succeed if the quality of their understory habitat as well as the canopy is maintained and restored.  相似文献   

11.
Colonization and extinction are primary drivers of local population dynamics, community structure, and spatial patterns of biological diversity. Existing paradigms of island biogeography, metapopulation biology, and metacommunity ecology, as well as habitat management and conservation biology based on those paradigms, emphasize patch size, number, and isolation as primary characteristics influencing colonization and extinction. Habitat selection theory suggests that patch quality could rival size, number, and isolation in determining rates of colonization and resulting community structure. We used naturally colonized experimental landscapes to address four issues: (a) how do colonizing aquatic beetles respond to variation in patch number, (b) how do they respond to variation in patch quality, (c) does patch context affect colonization dynamics, and (d) at what spatial scales do beetles respond to habitat variation? Increasing patch number had no effect on per patch colonization rates, while patch quality and context were critical in determining colonization rates and resulting patterns of abundance and species richness at multiple spatial scales. We graphically illustrate how variation in immigration rates driven by perceived predation risk (habitat quality) can further modify dynamics of the equilibrium theory of island biogeography beyond predator-driven effects on extinction rates. Our data support the importance of patch quality and context as primary determinants of colonization rate, occupancy, abundance, and resulting patterns of species richness, and reinforce the idea that management of metapopulations for species preservation, and metacommunities for local and regional diversity, should incorporate habitat quality into the predictive equation.  相似文献   

12.
Rapid global climate change is resulting in novel abiotic and biotic conditions and interactions. Identifying management strategies that maximize probability of long‐term persistence requires an understanding of the vulnerability of species to environmental changes. We sought to quantify the vulnerability of Kirtland's Warbler (Setophaga kirtlandii), a rare Neotropical migratory songbird that breeds almost exclusively in the Lower Peninsula of Michigan and winters in the Bahamian Archipelago, to projected environmental changes on the breeding and wintering grounds. We developed a population‐level simulation model that incorporates the influence of annual environmental conditions on the breeding and wintering grounds, and parameterized the model using empirical relationships. We simulated independent and additive effects of reduced breeding grounds habitat quantity and quality, and wintering grounds habitat quality, on population viability. Our results indicated the Kirtland's Warbler population is stable under current environmental and management conditions. Reduced breeding grounds habitat quantity resulted in reductions of the stable population size, but did not cause extinction under the scenarios we examined. In contrast, projected large reductions in wintering grounds precipitation caused the population to decline, with risk of extinction magnified when breeding habitat quantity or quality also decreased. Our study indicates that probability of long‐term persistence for Kirtland's Warbler will depend on climate change impacts to wintering grounds habitat quality and contributes to the growing literature documenting the importance of considering the full annual cycle for understanding population dynamics of migratory species.  相似文献   

13.
Although food abundance is a principal determinant of distribution and abundance of many animals, most previous studies have not quantitatively assessed its importance relative to other factors that may also determine species distributions. We estimated frugivorous phainopepla Phainopepla nitens occupancy and density, food density, and vegetation structure on transects in fragmented mesquite and acacia woodlands over three years in non‐breeding and breeding seasons. Using an AIC framework and controlling for detection probability, we determined relative impacts of food abundance, vegetation structure, and habitat fragmentation on patch occupancy and density, and concomitant extinction and colonization probabilities of phainopeplas. Initial occupancy in winter 2002 was high (0.87 ± 0.047), and primarily positively correlated with food abundance and woodland area (Akaike weights wi= 0.998 and 0.750 respectively). Woodland area more strongly influenced occupancy where food was scarcer. Phainopepla density in both seasons was strongly positively correlated with food abundance, especially in the 2002 drought when density was higher (wi=1.0 for food and year). Density was higher in acacia than mesquite woodlands (wi= 1.0), and moderately negatively correlated with elevation (wi= 0.789). Extinction probability (patches vacated) was low (0.078 ± 0.040), and principally influenced by phainopepla density (wi= 0.968) and tree height (wi= 0.749). Colonization probability was low (0.15 ± 0.034) and determined by vegetation structure (wi= 1.0). Much recorded colonization was reoccupancy of woodlands previously occupied by single males in winter, then vacated in a breeding season. These results suggest that for an animal occupying a highly fragmented landscape, distributions and densities at the habitat patch scale are driven by food abundance, are moderately affected by habitat fragmentation, and are slightly influenced by vegetation structure.  相似文献   

14.
The metapopulation framework considers that the spatiotemporal distribution of organisms results from a balance between the colonization and extinction of populations in a suitable and discrete habitat network. Recent spatially realistic metapopulation models have allowed patch dynamics to be investigated in natural populations but such models have rarely been applied to plants. Using a simple urban fragmented population system in which favourable habitat can be easily mapped, we studied patch dynamics in the annual plant Crepis sancta (Asteraceae). Using stochastic patch occupancy models (SPOMs) and multi‐year occupancy data we dissected extinction and colonization patterns in our system. Overall, our data were consistent with two distinct metapopulation scenarios. A metapopulation (sensu stricto) dynamic in which colonization occurs over a short distance and extinction is lowered by nearby occupied patches (rescue effect) was found in a set of patches close to the city centre, while a propagule rain model in which colonization occurs from a large external population was most consistent with data from other networks. Overall, the study highlights the importance of external seed sources in urban patch dynamics. Our analysis emphasizes the fact that plant distributions are governed not only by habitat properties but also by the intrinsic properties of colonization and dispersal of species. The metapopulation approach provides a valuable tool for understanding how colonization and extinction shape occupancy patterns in highly fragmented plant populations. Finally, this study points to the potential utility of more complex plant metapopulation models than traditionally used for analysing ecological and evolutionary processes in natural metapopulations.  相似文献   

15.
Habitat use has important consequences for avian reproductive success and survival. In coastal areas with recreational activity, human disturbance may limit use of otherwise suitable habitat. Snowy plovers Charadrius nivosus have a patchy breeding distribution along the coastal areas on the Florida Panhandle, USA. Our goal was to determine the relative effects of seasonal human disturbance and habitat requirements on snowy plover habitat use. We surveyed 303 sites for snowy plovers, human disturbance, and habitat features between January and July 2009 and 2010. We made multiple visits during three different sampling periods that corresponded to snowy plover breeding: pre‐breeding, incubation, and brood‐rearing and used multi‐season occupancy models to examine whether human disturbance, habitat features, or both influenced site occupancy, colonization (probability of transition from an unoccupied site to an occupied site), and extinction (probability of transition from an occupied site to an unoccupied site). Snowy plover site occupancy and colonization was negatively associated with human disturbance and site extinction was positively associated with human disturbance. Interdune vegetation had a negative effect on occupancy and colonization, indicating that plovers were less likely to use areas with uniform, dense vegetation among dunes. Also, dune shape, beach debris, and access to low‐energy foraging areas influenced site occupancy, colonization, and extinction. Plovers used habitat based on beach characteristics that provided stage‐specific resource needs; however, human disturbance was the strongest predictor of site occupancy. In addition, vegetation plantings used to enhance dune rehabilitation may negatively impact plover site occupancy. Management actions that decrease human disturbance, such as symbolic fencing and signage, may increase the amount of breeding habitat available to snowy plovers on the Florida Panhandle and in other areas with high human activity. The specific areas that require this protection may vary across snowy plover life history stages.  相似文献   

16.
High latitude communities have low species richness and are rapidly warming with climate change. Thus, temporal changes in community composition are expected to be greatest at high latitudes. However, at the same time traits such as body size can also change with latitude, potentially offsetting or increasing changes to community composition over time. We tested how zooplankton communities (copepods and cladocerans) have changed over a 25–75 year time span by assessing colonization and extinction rates from lakes across an 1800 km latitudinal gradient, and further tested whether species traits predict rates of community change over time. Lake‐level dissimilarity, measured with Sorenson distance, decreased at higher latitudes. This decrease was due to higher colonization rates of cladocerans in lower latitude lakes and consistent extinction rates across the latitudinal gradient. At the species level, colonization increased with regional occupancy, and tended to be higher for smaller bodied, locally abundant, species. Local extinction rates were negatively correlated with local abundance and regional occupancy, but were not influenced by body size. None of these species‐specific characteristics changed predictably with latitude. Contrary to our expectations, low‐latitude zooplankton communities changed more rapidly than high‐latitude communities by becoming more species rich, not by losing species that were historically present. Moreover, colonization and extinction trends suggest that lakes have become increasingly dominated by species with smaller body sizes and that are already common locally and regionally. Together, these findings indicate that rates of species turnover in freshwater lakes across a latitudinal gradient are not predicted by rates of temperature change, but that turnover is nonetheless resulting in trait‐shifts that favour small, generalist species.  相似文献   

17.
Globally, long‐term research is critical to monitor the responses of tropical species to climate and land cover change at the range scale. Citizen science surveys can reveal the long‐term persistence of poorly known nomadic tropical birds occupying fragmented forest patches. We applied dynamic occupancy models to 13 years (2002–2014) of citizen science‐driven presence/absence data on Cape parrot (Poicephalus robustus), a food nomadic bird endemic to South Africa. We modeled its underlying range dynamics as a function of resource distribution, and change in climate and land cover through the estimation of colonization and extinction patterns. The range occupancy of Cape parrot changed little over time (ψ = 0.75–0.83) because extinction was balanced by recolonization. Yet, there was considerable regional variability in occupancy and detection probability increased over the years. Colonizations increased with warmer temperature and area of orchards, thus explaining their range shifts southeastwards in recent years. Although colonizations were higher in the presence of nests and yellowwood trees (Afrocarpus and Podocarpus spp.), the extinctions in small forest patches (≤227 ha) and during low precipitation (≤41 mm) are attributed to resource constraints and unsuitable climatic conditions. Loss of indigenous forest cover and artificial lake/water bodies increased extinction probabilities of Cape parrot. The land use matrix (fruit farms, gardens, and cultivations) surrounding forest patches provides alternative food sources, thereby facilitating spatiotemporal colonization and extinction in the human‐modified matrix. Our models show that Cape parrots are vulnerable to extreme climatic conditions such as drought which is predicted to increase under climate change. Therefore, management of optimum sized high‐quality forest patches is essential for long‐term survival of Cape parrot populations. Our novel application of dynamic occupancy models to long‐term citizen science monitoring data unfolds the complex relationships between the environmental dynamics and range fluctuations of this food nomadic species.  相似文献   

18.
Increased dispersal of individuals among discrete habitat patches should increase the average number of species present in each local habitat patch. However, experimental studies have found variable effects of dispersal on local species richness. Priority effects, predators, and habitat heterogeneity have been proposed as mechanisms that limit the effect of dispersal on species richness. However, the size of a habitat patch could affect how dispersal regulates the number of species able to persist. We investigated whether habitat size interacted with dispersal rate to affect the number of species present in local habitats. We hypothesized that increased dispersal rates would positively affect local species richness more in small habitats than in large habitats, because rare species would be protected from demographic extinction. To test the interaction between dispersal rate and habitat size, we factorially manipulated the size of experimental ponds and dispersal rates, using a model community of freshwater zooplankton. We found that high‐dispersal rates enhanced local species richness in small experimental ponds, but had no effect in large experimental ponds. Our results suggest that there is a trade‐off between patch connectivity (a mediator of dispersal rates) and patch size, providing context for understanding the variability observed in dispersal effects among natural communities, as well as for developing conservation and management plans in an increasingly fragmented world.  相似文献   

19.
Population viability analysis (PVA) has been applied to the management of many threatened populations. The objective of this study was, therefore, to estimate the PVA of Walia ibex at the Simen Mountains National Park, in the north‐central highlands of Ethiopia, with respect to population growth parameters, the probability of the population reaching a lower extinction threshold and the mean time to extinction. Direct census of the population was carried out in 2009. Secondary census data were also collected from park authorities and the literature reviews. The result revealed that the estimates of the infinitesimal mean, μ (0.04117) was greater than the infinitesimal variance, σ2 (0.0219). The probability that the population reaches the extinction threshold was very low (0.15%). The mean time required for the counts to decline from the existing population size to one individual animal was 160 years. But threatened species are adversely affected by changes in landscape. These changes can be brought by short‐ and long‐term human and climate change impacts, respectively. Therefore, with the absence of environmental and demographic stochasticity and, with the application of appropriate reproductions and habitat management, the population of Walia ibex will be viable and reaches its mean time of extinctions after 160 years.  相似文献   

20.
Temporal variability in primary productivity can change habitat quality for consumer species by affecting the energy levels available as food resources. However, it remains unclear how habitat-quality fluctuations may determine the dynamics of spatially structured populations, where the effects of habitat size, quality and isolation have been customarily assessed assuming static habitats. We present the first empirical evaluation on the effects of stochastic fluctuations in primary productivity—a major outcome of ecosystem functions—on the metapopulation dynamics of a primary consumer. A unique 13-year dataset from an herbivore rodent was used to test the hypothesis that inter-annual variations in primary productivity determine spatiotemporal habitat occupancy patterns and colonization and extinction processes. Inter-annual variability in productivity and in the growing season phenology significantly influenced habitat colonization patterns and occupancy dynamics. These effects lead to changes in connectivity to other potentially occupied habitat patches, which then feed back into occupancy dynamics. According to the results, the dynamics of primary productivity accounted for more than 50% of the variation in occupancy probability, depending on patch size and landscape configuration. Evidence connecting primary productivity dynamics and spatiotemporal population processes has broad implications for metapopulation persistence in fluctuating and changing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号