首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individuals with an extra X chromosome are at increased risk for autism symptoms. This study is the first to assess theory of mind and facial affect labeling in children with an extra X chromosome. Forty‐six children with an extra X chromosome (29 boys with Klinefelter syndrome and 17 girls with Trisomy X), 56 children with autism spectrum disorder (ASD) and 88 non‐clinical controls, aged 9–18 years, were included. Similar to children with ASD, children with an extra X chromosome showed significant impairments in social cognition. Regression analyses showed that different cognitive functions predicted social cognitive skills in the extra X and ASD groups. The social cognitive deficits were similar for boys and girls with an extra X chromosome, and not specific for a subgroup with high Autism Diagnostic Interview Revised autism scores. Thus, children with an extra X chromosome show social cognitive deficits, which may contribute to social dysfunction, not only in children showing a developmental pattern that is ‘typical’ for autism but also in those showing mild or late presenting autism symptoms. Our findings may also help explain variance in type of social deficit: children may show similar social difficulties, but these may arise as a consequence of different underlying information processing deficits.  相似文献   

2.
Prenatal stress is associated with altered behavioral, cognitive, and psychiatric outcomes in offspring. Due to the importance of GABAergic systems in normal development and in psychiatric disorders, prenatal stress effects on these neurons have been investigated in animal models. Prenatal stress delays GABAergic progenitor migration, but the significance of these early developmental disruptions for the continued development of GABAergic cells in the juvenile brain is unclear. Here, we examined effects of prenatal stress on populations of GABAergic neurons in juvenile and adult medial frontal cortex (mFC) and hippocampus through stereological counting, gene expression, and relevant anxiety‐like and social behaviors. Postnatally, the total GABAergic cell number that peaks in adolescence showed altered trajectories in mFC and hippocampus. Parvalbumin neuron proportion in juvenile brain was altered by prenatal stress, but parvalbumin gene expression showed no differences. In adult brain, parvalbumin neuron proportions were altered by prenatal stress with opposite gene expression changes. Adult prenatally stressed offspring showed a lack of social preference on a three‐chambered task, increased anxiety‐like behavior on the elevated plus maze, and reduced center time in an open field. Despite a lack of significant group differences in adult total GABAergic cell populations, performance of these tasks was correlated with GABAergic populations in mFC and hippocampus. In conclusion, prenatal stress resulted in a delay in GABAergic cell number and maturation of the parvalbumin subtype. Influences of prenatal stress on GABAergic populations during developmentally dynamic periods and during adulthood may be relevant to the anxiety‐like behaviors that occur after prenatal stress. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 1078–1091, 2016  相似文献   

3.
Zhang Y  Wu Y  Zhu M  Wang C  Wang J  Zhang Y  Yu C  Jiang T 《PloS one》2011,6(12):e29673
Mental retardation is a developmental disorder associated with impaired cognitive functioning and deficits in adaptive behaviors. Many studies have addressed white matter abnormalities in patients with mental retardation, while the changes of the cerebral cortex have been studied to a lesser extent. Quantitative analysis of cortical integrity using cortical thickness measurement may provide new insights into the gray matter pathology. In this study, cortical thickness was compared between 13 patients with mental retardation and 26 demographically matched healthy controls. We found that patients with mental retardation had significantly reduced cortical thickness in multiple brain regions compared with healthy controls. These regions include the bilateral lingual gyrus, the bilateral fusiform gyrus, the bilateral parahippocampal gyrus, the bilateral temporal pole, the left inferior temporal gyrus, the right lateral orbitofrontal cortex and the right precentral gyrus. The observed cortical thickness reductions might be the anatomical substrates for the impaired cognitive functioning and deficits in adaptive behaviors in patients with mental retardation. Cortical thickness measurement might provide a sensitive prospective surrogate marker for clinical trials of neuroprotective medications.  相似文献   

4.
Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex patterns of cortical differences using both surface area and thickness. In addition, correlation results implicate specific brain regions in levels of anxiety in WS, consistent with previous reports investigating general anxiety disorders in the general population.  相似文献   

5.
Neuroimaging studies have shown that having an extra X chromosome is associated with abnormal structure and function of brain areas in the frontal lobe, which is crucially involved in executive functioning. However, there is little of knowledge of the type and severity of executive dysfunction, and the impact on emotional and behavioral problems. The present study aims to provide in this. In total, 40 children (23 boys with 47,XXY and 17 girls with 47,XXX) with an extra X chromosome and 100 non‐clinical controls (47 boys and 53 girls) participated in the study. The participants were 9–18 years old. Processing speed and executive functioning were assessed using the Amsterdam Neuropsychological Testbattery (ANT) and the Dysexecutive Questionnaire (DEX). Problems in emotional and behavioral functioning were assessed with the Childhood Behavior Checklist (CBCL). Children with an extra X chromosome showed deficits in inhibition, mental flexibility, sustained attention and visual working memory. Parental report showed high levels of everyday manifestations of executive dysfunction. More severe inhibition difficulties were associated with higher levels of thought problems, aggression and rule breaking behavior. Boys and girls with an extra X chromosome could not be differentiated based on severity of executive dysfunction, however, girls had lower information processing speed than boys. These findings suggest that executive dysfunction may be part of the phenotype of children with an extra X chromosome, impacting the ability to function adequately in everyday life. Furthermore, children with impairments in inhibition may have more problems in regulating their thinking, emotions and behavior.  相似文献   

6.
Some researchers have suggested that the default mode network (DMN) plays an important role in the pathological mechanisms of Alzheimer’s disease (AD). To examine whether the cortical activities in DMN regions show significant difference between mild AD from mild cognitive impairment (MCI), electrophysiological responses were analyzed from 21 mild Alzheimer’s disease (AD) and 21 mild cognitive impairment (MCI) patients during an eyes closed, resting-state condition. The spectral power and functional connectivity of the DMN were estimated using a minimum norm estimate (MNE) combined with fast Fourier transform and imaginary coherence analysis. Our results indicated that source-based EEG maps of resting-state activity showed alterations of cortical spectral power in mild AD when compared to MCI. These alterations are characteristic of attenuated alpha or beta activities in the DMN, as are enhanced delta or theta activities in the medial temporal, inferior parietal, posterior cingulate cortex and precuneus. With regard to altered synchronization in AD, altered functional interconnections were observed as specific connectivity patterns of connection hubs in the precuneus, posterior cingulate cortex, anterior cingulate cortex and medial temporal regions. Moreover, posterior theta and alpha power and altered connectivity in the medial temporal lobe correlated significantly with scores obtained on the Mini-Mental State Examination (MMSE). In conclusion, EEG is a useful tool for investigating the DMN in the brain and differentiating early stage AD and MCI patients. This is a promising finding; however, further large-scale studies are needed.  相似文献   

7.
Li Y  Hu Y  Liu T  Wu D 《Cognitive neurodynamics》2011,5(2):221-229
This paper is to study auditory event-related potential P300 in patients with anxiety and depressive disorders using dipole source analysis. Auditory P300 using 2-stimulus oddball paradigm was collected from 35 patients with anxiety disorder, 32 patients with depressive disorder, and 30 healthy controls. P300 dipole sources and peak amplitude of dipole activities were analyzed. The source analysis resulted in a 4-dipole configuration, where temporal dipoles displayed greater P300 amplitude than that of frontal dipoles. In addition, a right-greater-than-left hemispheric asymmetry of dipole magnitude was found in patients with anxiety disorder, whereas a left-greater-than-right hemispheric asymmetry of dipole magnitude was observed in depressed patients. Results indicated that the asymmetry was more prominent over the temporal dipole than that of frontal dipoles in patients. Patients with anxiety disorder may increase their efforts to enhance temporal dipole activity to compensate for a deficit in frontal cortex processing, while depressed patients show dominating reduction of right temporal activity. The opposite nature of results observed with hemispheric asymmetry in depressive and anxiety disorders could serve to be valuable information for psychiatric studies.  相似文献   

8.
Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia have an expansive array of reported genetic and environmental contributing factors. However, none of these factors alone can account for a substantial proportion of cases of either disorder. Instead, many gene‐by‐environment interactions are responsible for neurodevelopmental disturbances that lead to these disorders. The current experiment used heterozygous knock‐out mice to examine a potential interaction between 2 factors commonly linked to neurodevelopmental disorders and cognitive deficit: imbalanced excitatory/inhibitory signaling in the cortex and prenatal stress (PNS) exposure. Both of these factors have been linked to disrupt GABAergic signaling in the prefrontal cortex (PFC), a common feature of neurodevelopmental disorders. The neuronal PAS domain protein 4 (Npas4) gene is instrumental in regulation of the excitatory/inhibitory balance in the cortex and hippocampus in response to activation. Npas4 heterozygous and wild‐type male and female mice were exposed to either PNS or standard gestation, then evaluated during adulthood in social and anxiety behavioral measures. The combination of PNS and Npas4 deficiency in male mice impaired social recognition. This behavioral deficit was associated with decreased parvalbumin and cFos protein expression in the infralimbic region of the PFC following social stimulation in Npas4 heterozygous males. In contrast, females displayed fewer behavioral effects and molecular changes in PFC in response to PNS and decreased Npas4.  相似文献   

9.
The principle omega-3 fatty acid in brain, docosahexaenoic acid (DHA), accumulates in the brain during perinatal cortical expansion and maturation. Animal studies have demonstrated that reductions in perinatal brain DHA accrual are associated with deficits in neuronal arborization, multiple indices of synaptic pathology including deficits in serotonin and mesocorticolimbic dopamine neurotransmission, neurocognitive deficits, and elevated behavioral indices of anxiety, aggression, and depression. In primates and humans, preterm delivery is associated with deficits in fetal cortical DHA accrual, and children/adolescents born preterm exhibit deficits in cortical gray matter maturation, neurocognitive deficits particularly in the realm of attention, and increased risk for attention-deficit/hyperactivity disorder (ADHD) and schizophrenia. Individuals diagnosed with ADHD or schizophrenia exhibit deficits in cortical gray matter maturation, and medications found to be efficacious in the treatment of these disorders increase cortical and striatal dopamine neurotransmission. These associations in conjunction with intervention trials showing enhanced cortical visual acuity and cognitive outcomes in preterm and term infants fed DHA, suggest that perinatal deficits in brain DHA accrual may represent a preventable neurodevelopmental risk factor for the subsequent emergence of psychopathology.  相似文献   

10.
Age-related changes in cortical thickness have been observed during adolescence, including thinning in frontal and parietal cortices, and thickening in the lateral temporal lobes. Studies have shown sex differences in hormone-related brain maturation when boys and girls are age-matched, however, because girls mature 1-2 years earlier than boys, these sex differences could be confounded by pubertal maturation. To address puberty effects directly, this study assessed sex differences in testosterone-related cortical maturation by studying 85 boys and girls in a narrow age range and matched on sexual maturity. We expected that testosterone-by-sex interactions on cortical thickness would be observed in brain regions known from the animal literature to be high in androgen receptors. We found sex differences in associations between circulating testosterone and thickness in left inferior parietal lobule, middle temporal gyrus, calcarine sulcus, and right lingual gyrus, all regions known to be high in androgen receptors. Visual areas increased with testosterone in boys, but decreased in girls. All other regions were more impacted by testosterone levels in girls than boys. The regional pattern of sex-by-testosterone interactions may have implications for understanding sex differences in behavior and adolescent-onset neuropsychiatric disorders.  相似文献   

11.
Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.  相似文献   

12.
Major depression and schizophrenia are two of the most serious psychiatric disorders and share similar behavioral symptoms. Whether these similar behavioral symptoms underlie any convergent psychiatric pathological mechanisms is not yet clear. To address this issue, this study sought to investigate the whole-brain resting-state functional magnetic resonance imaging (MRI) of major depression and schizophrenia by using multivariate pattern analysis. Thirty-two schizophrenic patients, 19 major depressive disorder patients and 38 healthy controls underwent resting-state functional MRI scanning. A support vector machine in conjunction with intrinsic discriminant analysis was used to solve the multi-classification problem, resulting in a correct classification rate of 80.9% via leave-one-out cross-validation. The depression and schizophrenia groups both showed altered functional connections associated with the medial prefrontal cortex, anterior cingulate cortex, thalamus, hippocampus, and cerebellum. However, the prefrontal cortex, amygdala, and temporal poles were found to be affected differently by major depression and schizophrenia. Our preliminary study suggests that altered connections within or across the default mode network and the cerebellum may account for the common behavioral symptoms between major depression and schizophrenia. In addition, connections associated with the prefrontal cortex and the affective network showed promise as biomarkers for discriminating between the two disorders.  相似文献   

13.
The cortical formations of the brain involved in visual functions (the occipital and temporo-parieto- occipital areas, the oculomotor area of the prefrontal cortex), as well as the motor cortex in the representation zone of the arm and the medial region of the frontal cortex adjacent to the limbic lobe, were studied in post-mortem material. The thickness of the cortex and cortical layer III, the sizes of pyramidal neurons, the specific volumes of neurons and intracortical vessels were studied in subjects of both sexes, from birth to the age of 20 years, at yearly intervals (103 observations) using histological techniques, computer morphometric and stereological analysis. The thickness of the cortex of the cerebral hemispheres was observed to intensively increase from birth to the age of 3 years in the occipital, temporo-parieto-occipital and prefrontal cortical areas involved in visual recognition processes. The increase in thickness of the cerebral cortex continues until the age of 6 in the occipital cortex and in the oculomotor area, until the age of 7 years in the temporo-parietooccipital area and the medial prefrontal area, and until the age of 8–9 years in the motor cortex. The sizes of pyramidal neurons increase until the age of 6 years in the motor cortex, until the age of 8 years on the medial surface of the frontal lobe, and until the age of 9–10 years in the temporo-parieto-occipital area and in the dorsolateral area of the prefrontal cortex. The specific volume of neurons and blood vessels in the cortex of the cerebral hemispheres decreases and the volume of intracortical fibers increases throughout the ascending ontogeny, which is manifested most intensively in the prefrontal cortex.  相似文献   

14.

Background

Despite its estimated high heritability, the genetic architecture leading to differences in cognitive performance remains poorly understood. Different cortical regions play important roles in normal cognitive functioning and impairment. Recently, we reported on sets of regionally enriched genes in three different cortical areas (frontomedial, temporal and occipital cortices) of the adult rat brain. It has been suggested that genes preferentially, or specifically, expressed in one region or organ reflect functional specialisation. Employing a gene-based approach to the analysis, we used the regionally enriched cortical genes to mine a genome-wide association study (GWAS) of the Norwegian Cognitive NeuroGenetics (NCNG) sample of healthy adults for association to nine psychometric tests measures. In addition, we explored GWAS data sets for the serious psychiatric disorders schizophrenia (SCZ) (n = 3 samples) and bipolar affective disorder (BP) (n = 3 samples), to which cognitive impairment is linked.

Principal Findings

At the single gene level, the temporal cortex enriched gene RAR-related orphan receptor B (RORB) showed the strongest overall association, namely to a test of verbal intelligence (Vocabulary, P = 7.7E-04). We also applied gene set enrichment analysis (GSEA) to test the candidate genes, as gene sets, for enrichment of association signal in the NCNG GWAS and in GWASs of BP and of SCZ. We found that genes differentially expressed in the temporal cortex showed a significant enrichment of association signal in a test measure of non-verbal intelligence (Reasoning) in the NCNG sample.

Conclusion

Our gene-based approach suggests that RORB could be involved in verbal intelligence differences, while the genes enriched in the temporal cortex might be important to intellectual functions as measured by a test of reasoning in the healthy population. These findings warrant further replication in independent samples on cognitive traits.  相似文献   

15.
The neural crest is a unique structure in vertebrates. Wnt1‐cre and Wnt1‐GAL4 double transgenic (dTg) mice have been used in a variety of studies concerning neural crest cell lineages in which the Cre/loxP or GAL4/UAS system was applied. Here, we show psychiatric disorder‐related behavioral abnormalities and histologic alterations in a neural crest‐derived brain region in dTg mice. The dTg mice exhibited increased locomotor activity, decreased social interaction, and impaired short‐term spatial memory and nesting behavior. The choline acetyltransferase‐ and vesicular glutamate transporter 2‐immunoreactive habenulointerpeduncular fiber tracts that project from the medial habenular nucleus of the epithalamus to the interpeduncular nucleus of the midbrain tegmentum appeared irregular in the dTg mice. Both the medial habenula nucleus and the interpeduncular nucleus were confirmed to be derived from the neural crest. The findings of this study suggest that neural crest‐derived cells have pathogenic roles in the development of psychiatric disorders and that the dTg mouse could be a useful animal model for studying the pathophysiology of mental illness such as autism and schizophrenia. Scientists that use the dTg mice as a cre‐transgenic deleter line should be cautious in its possible toxicity, especially if behavioral analyses are to be performed.  相似文献   

16.
Although Attention-Deficit/Hyperactivity Disorder (ADHD) was initially regarded as a disorder exclusive to childhood, nowadays its prevalence in adulthood is well established. The development of novel techniques for quantifying the thickness of the cerebral mantle allows the further exploration of the neuroanatomical profiles underlying the child and adult form of the disorder. To examine the cortical mantle in children and adults with ADHD, we applied a vertex-wise analysis of cortical thickness to anatomical brain MRI scans acquired from children with (n = 43) and without ADHD (n = 41), as well as a group of adult neurotypical individuals (n = 31), adult patients with a history of stimulant treatment (n = 31) and medication-naïve adults with ADHD (n = 24). We observed several clusters of reduced laminar cortical thickness in ADHD patients in comparison to neurotypical individuals. These differences were primarily located in the dorsal attention network, including the bilateral inferior and superior parietal cortex and a section of the frontal cortex (centered on the superior frontal and precentral gyrus bilaterally). Further laminar thickness deficits were observed in the bilateral orbitofrontal cortex and medial occipital cortex. The deficits in the cortical surface were especially pronounced in the child sample, while adult patients showed a more typical laminar thickness across the cerebral mantle. These findings show that the neuroanatomical profile of ADHD, especially the childhood form of the disorder, involves robust alterations in the cortical mantle, which are most prominent in brain regions subserving attentional processing.  相似文献   

17.
Twin, family and recent molecular studies support the hypothesis of genetic overlapping between schizophrenia and bipolar disorder. Brain structural features shared by both psychiatric disorders might be the phenotypic expression of a common genetic risk background. Interleukin‐1 (IL‐1) cluster (chromosome 2q13) genetic variability, previously associated with an increased risk both for schizophrenia and for bipolar disorder, has been also associated with gray matter (GM) deficits, ventricular enlargement and hypoactivity of prefrontal cortex in schizophrenia. The aim of the present study was to analyze the influence of IL‐1 cluster on brain morphology in bipolar disorder. Genetic variability at IL‐1B and IL‐1RN genes was analyzed in 20 DSM‐IV ( Diagnostic and Statistical Manual of Mental Disorders ‐Fourth Edition) bipolar patients. Magnetic resonance imaging (MRI) measurements were obtained for whole‐brain GM and white matter, dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus, hippocampus and lateral ventricles. MRI data were corrected for age and cranial size using regression parameters from a group of 45 healthy subjects. A ?511C/T polymorphism (rs16944) of IL‐1B gene was associated with whole‐brain GM deficits (P = 0.031) and left DLPFCGM deficits (P = 0.047) in bipolar disorder patients. These findings support the hypothesis of IL‐1 cluster variability as a shared genetic risk factor contributing to GM deficits both in bipolar disorder and in schizophrenia. Independent replication in larger samples would be of interest to confirm these results.  相似文献   

18.
Adolescent idiopathic scoliosis (AIS) is a multifactorial disease affecting approximately 1–4% of teenagers especially girls at the age of 10–16, but its etiopathogenesis remains uncertain. Previous study has revealed that the cortical thickness in AIS patients is different from that in normal controls. Cortical thickness measurements are known to be strongly correlated between regions that are axonally connected. Hence, a hypothesis is proposed to study the possibility to demonstrate abnormal structural network revealed by cortical thickness in AIS patients. The aim of the study is to investigate abnormalities in the organization of the brain cortical network in AIS patients. This study included 42 girls with severe idiopathic scoliosis (14.7±1.3 years old) and 41 age-matched normal controls (NC, 14.6±1.4 years old). The brain cortex was partitioned into 154 cortical regions based on gyral and sulcal structure. The interregional connectivity was measured as the statistical correlations between the regional mean thicknesses across the subjects. We employed the graph theoretic analysis to examine the alteration in interregional correlation, small-world efficiency, hub distribution, and regional nodal characteristics in AIS patients. We demonstrated that the cortical network of AIS patients fully preserved the small-world architecture and organization, and further verified the hemispheric asymmetry of AIS brain. Our results indicated increased central role of temporal and occipital cortex and decreased central role of limbic cortex in AIS patients compared with controls. Furthermore, decreased structural connectivity between hemispheres and increased connectivity in several cortical regions were observed. The findings of the study reveal the pattern of structural network alteration in AIS brain, and would help in understanding the mechanism and etiopathogenesis of AIS.  相似文献   

19.
Chronic pain is frequently accompanied by the manifestation of emotional disturbances and cognitive deficits. While a causality relation between pain and emotional/cognitive disturbances is generally assumed, several observations suggest a temporal dissociation and independent mechanisms. We therefore studied Sprague‐Dawley rats that presented a natural resistance to pain manifestation in a neuropathy model (spared nerve injury [SNI]) and compared their performance in a battery of behavioral paradigms—anxiety, depression and fear memory—with animals that presented a pain phenotype. Afterward, we performed an extensive volumetric analysis across prefrontal, orbitofrontal and insular cortical areas. The majority of SNI animals manifested mechanical allodynia (low threshold [LT]), but 13% were similar to Sham controls (high threshold [HT]). Readouts of spontaneous hypersensivity (paw flinches) were also significantly reduced in HT and correlated with allodynia. To increase the specificity of our findings, we segregated the SNI animals in those with left (SNI‐L) and right (SNI‐R) lesions and the lack of association between pain and behavior still remains. Left‐lesioned animals, independent of the LT or HT phenotype, presented increased anxiety‐like behaviors and decreased well‐being. In contrast, we found that the insular cortex (agranular division) was significantly smaller in HT than in LT. To conclude, pain and emotional disturbances observed following nerve injury are to some extent segregated phenomena. Also, HT and LT SNI presented differences in insular volumes, an area vastly implicated in pain perception, suggesting a supraspinal involvement in the manifestation of these phenotypes.  相似文献   

20.
α2肾上腺素受体与前额叶皮层认知功能   总被引:2,自引:0,他引:2  
灵长类动物上的一系列研究表明,去甲肾上腺素通过作用于前额叶皮层突触后α2A受体增强前额叶皮层的认知功能,如注意力调节,工作记忆及反应抑制等。这些基础性的研究结果有助于开发新的药物治疗方法,用于治疗前额叶皮层认知功能障碍(如注意力缺损多动症)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号