首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Crop yields in sub‐Saharan Africa remain stagnant at 1 ton ha?1, and 260 million people lack access to adequate food resources. Order‐of‐magnitude increases in fertilizer use are seen as a critical step in attaining food security. This increase represents an unprecedented input of nitrogen (N) to African ecosystems and will likely be accompanied by increased soil emissions of nitric oxide (NO). NO is a precursor to tropospheric ozone, an air pollutant and greenhouse gas. Emissions of NO from soils occur primarily during denitrification and nitrification, and N input rates are a key determinant of emission rates. We established experimental maize plots in western Kenya to allow us to quantify the response function relating NO flux to N input rate during the main 2011 and 2012 growing seasons. NO emissions followed a sigmoid response to fertilizer inputs and have emission factors under 1% for the roughly two‐month measurement period in each year, although linear and step relationships could not be excluded in 2011. At fertilization rates above 100 kg N ha?1, NO emissions increased without a concomitant increase in yields. We used the geos‐chem chemical transport model to evaluate local impacts of increased NO emissions on tropospheric ozone concentrations. Mean 4‐hour afternoon tropospheric ozone concentrations in Western Kenya increased by up to roughly 2.63 ppbv under fertilization rates of 150 kg N ha?1 or higher. Using AOT40, a metric for assessing crop damage from ozone, we find that the increased ozone concentrations result in an increase in AOT40 exposure of approximately 110 ppbh for inputs of 150 kg N ha?1 during the March–April–May crop growing season, compared with unfertilized simulations, with negligible impacts on crop productivity. Our results suggest that it may be possible to manage Kenyan agricultural systems for high yields while avoiding substantial impacts on air quality.  相似文献   

2.
Closing yield gaps through higher fertilizer use increases direct greenhouse gas emissions but shares the burden over a larger production volume. Net greenhouse gas (GHG) footprints per unit product under agricultural intensification vary depending on the context, scale and accounting method. Life cycle analysis of footprints includes attributable emissions due to (i) land conversion (‘fixed cost’); (ii) external inputs used (‘variable cost’); (iii) crop production (‘agronomic efficiency’); and (iv) postharvest transport and processing (‘proportional’ cost). The interplay between fixed and variable costs results in a nuanced opportunity for intermediate levels of intensification to minimize footprints. The fertilizer level that minimizes the footprint may differ from the economic optimum. The optimization problem can be solved algebraically for quadratic crop fertilizer response equations. We applied this theory to data of palm oil production and fertilizer use from 23 plantations across the Indonesian production range. The current EU threshold requiring at least 35% emission saving for biofuel use can never be achieved by palm oil if produced: (i) on peat soils, or (ii) on mineral soils where the C debt due to conversion is larger than 20 Mg C ha?1, if the footprint is calculated using an emission ratio of N2O–N/N fertilizer of 4%. At current fertilizer price levels in Indonesia, the economically optimized N fertilizer rate is 344–394 kg N ha?1, while the reported mean N fertilizer rate is 141 kg N ha?1 yr?1 and rates of 74–277 kg N ha?1 would minimize footprints, for a N2O–N/N fertilizer ratio of 4–1%, respectively. At a C debt of 30 Mg C ha?1, these values are 200–310 kg N ha?1. Sustainable weighting of ecology and economics would require a higher fertilizer/yield price ratio, depending on C debt. Increasing production by higher fertilizer use from current 67% to 80% of attainable yields would not decrease footprints in current production conditions.  相似文献   

3.
Sustainable and environmentally benign switchgrass production systems need to be developed for switchgrass to become a large‐scale dedicated energy crop. An experiment was conducted in California from 2009 to 2011 to determine the sustainability of low‐ and high‐input irrigated switchgrass systems as a function of yield, irrigation requirement, crop N removal, N translocation from aboveground (AG) to belowground (BG) biomass during senescence, and fertilizer 15N recovery (FNR) in the AG and BG biomass (0–300 cm), and soil (0–300 cm). The low‐input system consisted of a single‐harvest (mid‐fall) irrigated until flowering (early summer), while the high‐input system consisted of a two‐harvest system (early summer and mid‐fall) irrigated throughout the growing season. Three N fertilization rates (0, 100, and 200 kg N ha?1 yr?1) were applied as subtreatments in a single application in the spring of each year. A single pulse of 15N enriched fertilizer was applied in the first year of the study to micro‐plots within the 100 kg N ha?1 subplots. Average yields across years under optimal N rates (100 and 200 kg ha?1 yr?1 for low‐ and high‐input systems, respectively) were 20.7 and 24.8 Mg ha?1. However, the low input (372 ha mm) required 47% less irrigation than the high‐input system (705 ha mm) and achieved higher irrigation use efficiency. In addition, the low‐input system had 46% lower crop N removal, 53% higher N stored in BG biomass, and a positive N balance, presumably due to 49% of 15N translocation from AG to BG biomass during senescence. Furthermore, at the end of 3 years, the low‐input system had lower fertilizer 15N removed by harvest (26%) and higher FNR remaining in the system in BG biomass plus soil (31%) than the high‐input system (45% and 21%, respectively). Based on these findings, low‐input systems are more sustainable than high‐input systems in irrigated Mediterranean climates.  相似文献   

4.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

5.
There is a tradeoff to consider when harvesting perennial biomass crops: harvest too late and yield declines, harvest too early and risk higher mineral contents, particularly nitrogen (N). Allowing the crop to completely senesce and recycle nutrients has several advantages, including improved feedstock quality and reduced fertilizer requirements, but it comes at a risk, particularly in temperate climates where snow and ice can reduce or destroy harvestable biomass. The effect of harvest time on the N concentration ([N]) and biomass of Panicum virgatum and Miscanthus × giganteus was evaluated at three sites in Illinois over two years. In both species [N] of standing biomass significantly declined with time ( P <0.0001). Interestingly, there was no significant interaction effect of species and sample date on [N] ( P =0.2888), but there was a highly significant interaction effect on the total N in standing biomass ( P <0.0001). The amount of standing N was directly related to biomass yield. Seasonal changes in standing N differed among locations, suggesting that harvest time recommendations for N management depend on location. P. virgatum would have potentially removed as much as 187 kg N ha−1 if harvested green, and as little as 5 kg N ha−1 if harvested in late winter. Because of higher biomass yields, M . × giganteus standing N ranged from 379 kg N ha−1 in June to <17 kg N ha−1 in February. Importantly, there was little overall change in [N] between an early winter (December) harvest and a late winter (February/March) harvest, indicating the benefits of N cycling in the system can be realized by end of the growing season and thus, at least from an N economy perspective, there is no reason to risk yield losses by delaying harvest over the winter.  相似文献   

6.
Switchgrass (Panicum virgatum L.) has been the principal perennial herbaceous crop investigated for bioenergy production in North America given its high production potential, relatively low input requirements, and potential suitability for use on marginal lands. Few large trials have determined switchgrass yields at field scale on marginal lands, including analysis of production costs. Thus, a field‐scale study was conducted to develop realistic yield and cost estimates for diverse regions of the USA. Objectives included measuring switchgrass response to fertility treatments (0, 56, and 112 kg N ha?1) and generating corresponding estimates of production costs for sites with diverse soil and climatic conditions. Trials occurred in Iowa, New York, Oklahoma, South Dakota, and Virginia, USA. Cultivars and management practices were site specific, and field‐scale equipment was used for all management practices. Input costs were estimated using final harvest‐year (2015) prices, and equipment operation costs were estimated with the MachData model ($2015). Switchgrass yields generally were below those reported elsewhere, averaging 6.3 Mg ha?1 across sites and treatments. Establishment stand percent ranged from 28% to 76% and was linked to initial year production. No response to N was observed at any site in the first production year. In subsequent seasons, N generally increased yields on well‐drained soils; however, responses to N were nil or negative on less well‐drained soils. Greatest percent increases in response to 112 kg N ha?1 were 57% and 76% on well‐drained South Dakota and Virginia sites, where breakeven prices to justify N applications were over $70 and $63 Mg?1, respectively. For some sites, typically promoted N application rates may be economically unjustified; it remains unknown whether a bioenergy industry can support the breakeven prices estimated for sites where N inputs had positive effects on switchgrass yield.  相似文献   

7.
The objective of this research was to determine the optimum nitrogen fertilizer rate for producing sweet sorghum (a promising biofuel crop) juice, sugar, and bagasse on silt loam, sandy loam, and clay soils in Missouri. Seven nitrogen fertilization rates were applied, ranging from 0 to 134 kg N ha?1. Regardless of the soil and year, the juice content of sweet sorghum stalk averaged 68.8% by weight. The juice yield ranged from 15.2 to 71.1 m3 ha?1. Soil and N rate significantly impacted the juice yield (P < 0.0001). The pH and the density of the juice were not affected by the soil or N. The sugar content (Brix) of the juice varied between 10.7% and 18.9%. N fertilization improved the sugar content of the juice. A negative correlation existed between the sugar concentration and the juice yield. In general, the lowest sugar content was found in the clay soil and the impact of the N fertilization on juice sugar content was most pronounced in that soil. The juice sugar yield ranged between 2 and 9.9 Mg ha?1, with significant differences found between years, N rates, and soils. N fertilization always increased the sugar yield in the clay soil, whereas in loam soil, a significant sugar response was recorded when the sweet sorghum was planted after corn. The average juice water content was 84% by weight. The dry bagasse yield fluctuated between 3.2 and 13.8 Mg ha?1 with significant difference found with N rate, soil, and year. When sweet sorghum was grown after soybean or cotton, its N requirement was less than after a corn crop was grown the previous year. In general, a minimum of 67 kg N ha?1 was required to optimize juice, sugar, and bagasse yield in sweet sorghum.  相似文献   

8.
Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize‐based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0–269 kg N ha?1 yr?1) that created a large range in crop residue inputs (3.60–9.94 Mg dry matter ha?1 yr?1), we provide the first agronomic assessment of long‐term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico‐chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra‐aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208 kg N ha?1 yr?1) and an excessive N rate (269 kg N ha?1 yr?1), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2O and NO3 emissions exponentially increase when agronomic optimum N is surpassed.  相似文献   

9.
Requirements for mitigation of the continued increase in greenhouse gas (GHG ) emissions are much needed for the North China Plain (NCP ). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH , and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP . The N2O emissions increased exponentially with mineral fertilizer N application rate, with =  0.2389e0.0058x for wheat season and =  0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha?1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O‐N ha?1 season?1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP .  相似文献   

10.
The effects of increased reactive nitrogen (N) deposition in forests depend largely on its fate in the ecosystems. However, our knowledge on the fates of deposited N in tropical forest ecosystems and its retention mechanisms is limited. Here, we report the results from the first whole ecosystem 15N labeling experiment performed in a N‐rich old‐growth tropical forest in southern China. We added 15N tracer monthly as 15NH415NO3 for 1 year to control plots and to N‐fertilized plots (N‐plots, receiving additions of 50 kg N ha?1 yr?1 for 10 years). Tracer recoveries in major ecosystem compartments were quantified 4 months after the last addition. Tracer recoveries in soil solution were monitored monthly to quantify leaching losses. Total tracer recovery in plant and soil (N retention) in the control plots was 72% and similar to those observed in temperate forests. The retention decreased to 52% in the N‐plots. Soil was the dominant sink, retaining 37% and 28% of the labeled N input in the control and N‐plots, respectively. Leaching below 20 cm was 50 kg N ha?1 yr?1 in the control plots and was close to the N input (51 kg N ha?1 yr?1), indicating N saturation of the top soil. Nitrogen addition increased N leaching to 73 kg N ha?1 yr?1. However, of these only 7 and 23 kg N ha?1 yr?1 in the control and N‐plots, respectively, originated from the labeled N input. Our findings indicate that deposited N, like in temperate forests, is largely incorporated into plant and soil pools in the short term, although the forest is N‐saturated, but high cycling rates may later release the N for leaching and/or gaseous loss. Thus, N cycling rates rather than short‐term N retention represent the main difference between temperate forests and the studied tropical forest.  相似文献   

11.
Although the effects of atmospheric nitrogen deposition on species composition are relatively well known, the roles of the different forms of nitrogen, in particular gaseous ammonia (NH3), have not been tested in the field. Since 2002, we have manipulated the form of N deposition to an ombrotrophic bog, Whim, on deep peat in southern Scotland, with low ambient N (wet + dry = 8 kg N ha?1 yr?1) and S (4 kg S ha?1 yr?1) deposition. A gradient of ammonia (NH3, dry N), from 70 kg N ha?1 yr?1 down to background, 3–4 kg N ha?1 yr?1 was generated by free air release. Wet ammonium (NH4+, wet N) was provided to replicate plots in a fine rainwater spray (NH4Cl at +8, +24, +56 kg N ha?1 yr?1). Automated treatments are coupled to meteorological conditions, in a globally unique, field experiment. Ammonia concentrations were converted to NH3‐N deposition (kg N ha?1) using a site/vegetation specific parameterization. Within 3 years, exposure to relatively modest deposition of NH3, 20–56 kg NH3‐N ha?1 yr?1 led to dramatic reductions in species cover, with almost total loss of Calluna vulgaris, Sphagnum capillifolium and Cladonia portentosa. These effects appear to result from direct foliar uptake and interaction with abiotic and biotic stresses, rather than via effects on the soil. Additional wet N by contrast, significantly increased Calluna cover after 5 years at the 56 kg N dose, but reduced cover of Sphagnum and Cladonia. Cover reductions caused by wet N were significantly different from and much smaller than those caused by equivalent dry N doses. The effects of gaseous NH3 described here, highlight the potential for ammonia to destroy acid heathland and peat bog ecosystems. Separating the effects of gaseous ammonia and wet ammonium deposition, for a peat bog, has significant implications for regulatory bodies and conservation agencies.  相似文献   

12.
Increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition induced by human activities have greatly influenced the stoichiometry of N and phosphorus (P). We used model forest ecosystems in open‐top chambers to study the effects of elevated CO2 (ca. 700 μmol mol?1) alone and together with N addition (100 kg N ha?1 yr?1) on N to P (N : P) ratios in leaves, stems and roots of five tree species, including four non‐N2 fixers and one N2 fixer, in subtropical China from 2006 to 2009. Elevated CO2 decreased or had no effects on N : P ratios in plant tissues of tree species. N addition, especially under elevated CO2, lowered N : P ratios in the N2 fixer, and this effect was significant in the stems and the roots. However, only one species of the non‐N2 fixers showed significantly lower N : P ratios under N addition in 2009, and the others were not affected by N addition. The reductions of N : P ratios in response to elevated CO2 and N addition were mainly associated with the increases in P concentrations. Our results imply that elevated CO2 and N addition could facilitate tree species to mitigate P limitation by more strongly influencing P dynamics than N in the subtropical forests.  相似文献   

13.
Increasing demand for food and biofuel feedstocks may substantially affect soil nutrient budgets, especially in the United States where there is great potential for corn (Zea mays L) stover as a biofuel feedstock. This study was designed to evaluate impacts of projected stover harvest scenarios on budgets of soil nitrogen (N), phosphorus (P), and potassium (K) currently and in the future across the conterminous United States. The required and removed N, P, and K amounts under each scenario were estimated on the basis of both their average contents in grain and stover and from an empirical model. Our analyses indicate a small depletion of soil N (?4 ± 35 kg ha?1) and K (?6 ± 36 kg ha?1) and a moderate surplus of P (37 ± 21 kg ha?1) currently on the national average, but with a noticeable variation from state to state. After harvesting both grain and projected stover, the deficits of soil N, P, and K were estimated at 114–127, 26–27, and 36–53 kg ha?1 yr?1, respectively, in 2006–2010; 131–173, 29–32, and 41–96 kg ha?1 yr?1, respectively, in 2020; and 161–207, 35–39, and 51–111 kg ha?1 yr?1, respectively, in 2050. This study indicates that the harvestable stover amount derived from the minimum stover requirement for maintaining soil organic carbon level scenarios under current fertilization rates can be sustainable for soil nutrient supply and corn production at present, but the deficit of P and K at the national scale would become larger in the future.  相似文献   

14.
Mustard (Brassica juncea L.) is characterized by large number of broad oblong shaped leaves in the lower layers. Our earlier studies have shown that removal of these shaded lower leaves on mustard plant axis enhanced growth, photosynthetic capacity and yield of the crop. We now present evidence that soil-applied nitrogen (N) at pre- or post-flowering stage following defoliation of lower leaves influences plant growth, photosynthesis and assimilation balance. Following defoliation at pre-flowering, i.e. 40 d after sowing (DAS) and N applied at the rate of 100 kg ha−1 at the time of sowing and 50 kg ha−1 at post-flowering (60 DAS) enhanced the characteristics maximally. The defoliation treatment together with N combinations and the time of its application, N at 150 kg ha−1 applied as single dose at the time of sowing or N applied in split; 100 kg ha−1 at the time of sowing and 50 kg ha−1 at 40 DAS or 75 kg ha−1 at the time of sowing or 75 kg ha−1 at pre- or post-flowering time proved less effective. The plants which were not defoliated and received 75 kg N ha−1 at the time of sowing and 75 kg ha−1 at 60 DAS showed lowest values. Furthermore, N assimilation was more efficient in plants following defoliation at 40 DAS. The results suggest that split N application (100 kg ha−1 at sowing and 50 kg ha−1 at post-flowering) enhances substantially growth, photosynthesis, N assimilation and yield of mustard following defoliation. This management practice could be adopted in mustard culture for increasing seed yield together with minimizing N loss.  相似文献   

15.
Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of contrasting land‐use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabilitated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China. Experimental N‐treatments (above ambient) were the following: Control (no N addition), N50 (50 kg N ha?1 yr?1), and N100 (100 kg N ha?1 yr?1). Results indicated that N addition significantly decreased soil P availability in the disturbed forest. In the rehabilitated forest, however, soil P availability was significantly increased by N addition. Decreases in soil P availability may be correlated with decreases in rates of P release from decomposing litter in the N‐treated plots, whereas the increase in soil P availability was correlated with an increase in litterfall production. Our results suggest that response of soil P availability to N deposition in the reforested tropical forests in southern China may vary greatly with temporal changes in tree species composition and soil nutrient status, caused by different land‐use practices.  相似文献   

16.
Although the goal of doubling food demand while simultaneously reducing agricultural environmental damage has become widely accepted, the dominant agricultural paradigm still considers high yields and reduced greenhouse gas (GHG) intensity to be in conflict with one another. Here, we achieved an increase in maize yield of 70% in on‐farm experiments by closing the yield gap and evaluated the trade‐off between grain yield, nitrogen (N) fertilizer use, and GHG emissions. Based on two groups of N application experiments in six locations for 16 on‐farm site‐years, an integrated soil‐crop system (HY) approach achieved 93% of the yield potential and averaged 14.8 Mg ha?1 maize grain yield at 15.5% moisture. This is 70% higher than current crop (CC) management. More importantly, the optimal N rate for the HY system was 250 kg N ha?1, which is only 38% more N fertilizer input than that applied in the CC system. Both the N2O emission intensity and GHG intensity increased exponentially as the N application rate increased, and the response curve for the CC system was always higher than that for the HY system. Although the N application rate increased by 38%, N2O emission intensity and the GHG intensity of the HY system were reduced by 12% and 19%, respectively. These on‐farm observations indicate that closing the yield gap alongside efficient N management should therefore be prominent among a portfolio of strategies to meet food demand while reducing GHG intensity at the same time.  相似文献   

17.
The impact of global changes on food security is of serious concern. Breeding novel crop cultivars adaptable to climate change is one potential solution, but this approach requires an understanding of complex adaptive traits for climate‐change conditions. In this study, plant growth, nitrogen (N) uptake, and yield in relation to climatic resource use efficiency of nine representative maize cultivars released between 1973 and 2000 in China were investigated in a 2‐year field experiment under three N applications. The Hybrid‐Maize model was used to simulate maize yield potential in the period from 1973 to 2011. During the past four decades, the total thermal time (growing degree days) increased whereas the total precipitation and sunshine hours decreased. This climate change led to a reduction of maize potential yield by an average of 12.9% across different hybrids. However, the potential yield of individual hybrids increased by 118.5 kg ha?1 yr?1 with increasing year of release. From 1973 to 2000, the use efficiency of sunshine hours, thermal time, and precipitation resources increased by 37%, 40%, and 41%, respectively. The late developed hybrids showed less reduction in yield potential in current climate conditions than old cultivars, indicating some adaptation to new conditions. Since the mid‐1990s, however, the yield impact of climate change exhibited little change, and even a slight worsening for new cultivars. Modern breeding increased ear fertility and grain‐filling rate, and delayed leaf senescence without modification in net photosynthetic rate. The trade‐off associated with delayed leaf senescence was decreased grain N concentration rather than increased plant N uptake, therefore N agronomic efficiency increased simultaneously. It is concluded that modern maize hybrids tolerate the climatic changes mainly by constitutively optimizing plant productivity. Maize breeding programs in the future should pay more attention to cope with the limiting climate factors specifically.  相似文献   

18.
Switchgrass (Panicum virgatum L.) production has the potential to improve soils and the environment. However, little is known about the long‐term future assessment of soil and environmental impacts associated with switchgrass production. In this study, soil organic carbon (SOC), soil nitrate (), water‐filled pore space (WFPS), carbon dioxide (CO2) and nitrous oxide (N2O) fluxes, and biomass yield from switchgrass field were predicted using DAYCENT models for 2016 through 2050. Measured data for model calibration and validation at this study site managed with nitrogen fertilization rates (N rates) (low, 0 kg N ha?1; medium, 56 kg N ha?1; and high, 112 kg N ha?1) and landscape positions (shoulder and footslope) for switchgrass production were collected from the previously published studies. Modeling results showed that the N fertilization can enhance SOC and soil NO3?, but increase soil N2O and CO2 fluxes. In this study, medium N fertilization was the optimum rate for enhancing switchgrass yield and reducing negative impact on the environment. Footslope position can be beneficial for improving SOC, , and yield, but contribute higher greenhouse gas (GHG) emissions compared to those of the shoulder. An increase in temperature and decrease in precipitation (climate scenarios) may reduce soil , WFPS, and N2O flux. Switchgrass production can improve and maintain SOC and , and reduce N2O and CO2 fluxes over the predicted years. These findings indicate that switchgrass could be a sustainable bioenergy crop on marginally yielding lands for improving soils without significant negative impacts on the environment in the long run.  相似文献   

19.
In rice cultivation, there are controversial reports on net impacts of nitrogen (N) fertilizers on methane (CH 4) emissions. Nitrogen fertilizers increase crop growth as well as alter CH 4 producing (Methanogens) and consuming (Methanotrophs) microbes, and thereby produce complex effects on CH 4 emissions. Objectives of this study were to determine net impact of N fertilizers on CH 4 emissions and to identify their underlying mechanisms in the rice soils. Database was obtained from 33 published papers that contained CH 4 emissions observations from N fertilizer (28–406 kg N ha?1) treatment and its control. Results have indicated that N fertilizers increased CH 4 emissions in 98 of 155 data pairs in rice soils. Response of CH 4 emissions per kg N fertilizer was significantly (P < 0.05) greater at < 140 kg N ha?1 than > 140 kg N ha?1 indicating that substrate switch from CH 4 to ammonia by Methanotrophs may not be a dominant mechanism for increased CH 4 emissions. On the contrary, decreased CH 4 emission in intermittent drainage by N fertilizers has suggested the stimulation of Methanotrophs in rice soils. Effects of N fertilizer stimulated Methanotrophs in reducing CH 4 emissions were modified by the continuous flood irrigation due to limitation of oxygen to Methanotrophs. Greater response of CH 4 emissions per kg N fertilizer in urea than ammonia sulfate probably indicated the interference of sulfate in the CH 4 production process. Overall, response of CH 4 emissions to N fertilizers was correlated with N‐induced crop yield (r = +0.39; P < 0.01), probably due to increased carbon substrates for Methanogens. Using CH 4 emission observations, this meta‐analysis has identified dominant microbial processes that control net effects of N fertilizers on CH 4 emissions in rice soils. Finally, we have provided a conceptual model that included microbial processes and controlling factors to predict effects of N fertilizers on CH 4 emissions in rice soils.  相似文献   

20.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号