首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increase of double-crested cormorant (Phalacrocorax auritus; hereafter, cormorant) populations during the last 2 decades has impacted many stakeholder groups. The negative effects of nesting cormorants on trees and other vegetation have motivated private organizations and government agencies to manage nesting colonies and reduce their impacts to private property and public resources. Management-induced reproductive failure has been shown to influence cormorant inter-annual nesting colony fidelity, but not complete abandonment from a nesting colony site. We attached very high frequency (VHF) transmitters and Global Positioning System (GPS) transmitters to nesting cormorants to monitor their movement response on a managed site (Young Island, VT [YI]) and an unmanaged site (Four Brothers Islands, NY [FB]). Additionally, we monitored these sites to determine the influence of management activities on subsequent-year colonization. On YI, management consisted of egg-oiling all cormorant nests (some nests had been oiled in previous years) and culling approximately 20% of adults. Annual dispersal rates did not differ between managed and unmanaged sites, but a nesting period interaction occurred with greater dispersal on the managed site following the incubation period. After 4 years of both egg oiling and culling, cormorant nesting on YI declined to zero. Simultaneously, cormorant numbers increased on the nearby unmanaged FB. We propose either the cumulative effect of partial or complete reproductive failure (8 yr) or simply the inclusion of adult culling (4 yr) caused the abandonment. From a colony-specific management perspective, the rapid decline was beneficial to the goal of restoring the vegetative community on YI. The effects of adult culling at nesting colonies, prior-year reproductive failure caused by egg oiling, or the combination of these factors may be required for complete and rapid nesting site abandonment. The use of culling adult breeders reduced nesting and likely limits the cost and logistics of control and allows more rapid initiation of mitigation measures and island habitat restoration. © 2011 The Wildlife Society.  相似文献   

2.
The decline of one farmland bird, the migratory European starling, has been attributed to both agricultural intensification and farmland abandonment and to factors operating both during the winter and during the breeding season. We analysed population data from thirty‐three Swedish nestbox colonies over more than two decades to determine if the national decline was caused by a common factor affecting all colonies or by local changes in the breeding grounds affecting starling colonies. We found that numbers of breeding starling had declined significantly, but at different rates in different colonies. The local population sizes were affected by previous years’ productivity at both national and local scales, suggesting that changes in habitat quality at both scales could affect local population trends. There were no long‐term trends in reproductive output, but fledgling production was lowest at intermediate years. The local population changes were positively related to local changes in reproductive output, but only when including complete nest‐failures. A relationship between population declines and low mean local productivity was the result of the association between population sizes and reproductive success over time, since decline rates of starlings were not related to the average success during the first part of the study, but to the average success during the later part of the study. The relationship between population change and changes in reproductive output was evident, but fledgling production showed negative density‐dependence. In conclusion this study suggests that the decline of the starling population in Sweden has been affected by processes at small spatial scales during the breeding season affecting reproductive success, but does not exclude an additional role for processes at large spatial scales or outside the breeding season.  相似文献   

3.
4.
Many pinniped populations precipitously declined during the 19th and 20th centuries due to overharvesting. In Uruguay, the South American sea lion (SASL) was harvested until 1986. Birth rates in two nearby breeding colonies have had opposite trends for at least 20 yr. We assessed different mechanisms that could explain opposite trends in birth rates in the two SASL colonies. We compared feeding habits (δ15N and δ13C) of breeding females, birth mass, individual growth rate and early survival of pups and the social structure between colonies. Breeding females from the two colonies did not differ in their feeding habits. However, male and female pups grew faster but had a lower survival in the second month in the smallest colony. We found differences in the social structures, with a higher proportion of males in the smallest colony. The latter is important because peripheral SASL males may abduct and kill pups, which may explain the lower survival of pups in smaller colonies. We believe that the cumulative effects of population extractions have lowered the local SASL population size and disrupted its social structure to the point where Allee‐like effects could become important and hamper the recovery of the Uruguayan SASL population.  相似文献   

5.
Dispersal is increasingly recognized as a process of fundamental importance in population dynamics and other aspects of biology. Concurrently, interest in age‐dependent effects on survival, including actuarial senescence, has increased, especially in studies of long‐lived seabirds. Nevertheless, datasets necessary for studying dispersal and age‐dependent effects are few, as these require simultaneous data collection at two or more sites over many years. We conducted a 22‐year capture‐mark‐recapture study of Common Terns Sterna hirundo at three breeding colonies 10–26 km apart in Buzzards Bay, Massachusetts, USA. All birds in the study were of known age (range 2–28 years, median 7 years, = 3290) and 77% were of known sex. Estimates of adult recapture, survival and breeding dispersal rates were obtained for all age‐classes from 2 to 20 years. The model that acquired 100% of the QAICc (Akaike's Information Criterion adjusted for small sample size and overdispersion) weight in our analysis included age‐specificity in all parameters but no relationship with sex. Our study may be the first to demonstrate age‐specificity in recapture, survival and breeding dispersal rates simultaneously, using a single model. Annual rates of breeding dispersal ranged from <0.01 to 0.27, with a population‐weighted mean of 0.065; they decreased with increasing distance between colony sites and, unexpectedly, increased with age. Breeding dispersal did not increase consistently after years with predation on adults or after an attempt to displace birds from an oiled site. Survival rates did not vary among sites or years. Annual adult survival increased from 0.80 in 2‐year‐old birds to a maximum of approximately 0.88 around age 8 years and then declined to 0.76 at age 20 years, yielding strong evidence for actuarial senescence. The peak annual survival rate of 0.88 is at the low end of other estimates for Common Tern and in the lower part of the range recorded for other terns, but total numbers in the three colonies increased seven‐fold during the study. This was part of a slower increase in the regional population, with net immigration into the study colonies. Our results demonstrate the biological significance of breeding dispersal in local population dynamics and age‐related effects on survival and dispersal from a metapopulation of a long‐lived seabird.  相似文献   

6.
Knowledge of the rate, distance and direction of dispersal within and among breeding areas is required to understand and predict demographic and genetic connectivity and resulting population and evolutionary dynamics. However dispersal rates, and the full distributions of dispersal distances and directions, are rarely comprehensively estimated across all spatial scales relevant to wild populations. We used re‐sightings of European Shags Phalacrocorax aristotelis colour‐ringed as chicks on the Isle of May (IoM), UK, to quantify rates, distances and directions of dispersal from natal to subsequent breeding sites both within IoM (within‐colony dispersal) and across 27 other breeding colonies covering 1045 km of coastline (among‐colony dispersal). Additionally, we used non‐breeding season surveys covering 895 km of coastline to estimate breeding season detection probability and hence potential bias in estimated dispersal parameters. Within IoM, 99.6% of individuals dispersed between their natal and observed breeding nest‐site. The distribution of within‐colony dispersal distances was right‐skewed; mean distance was shorter than expected given random settlement within IoM, yet some individuals dispersed long distances within the colony. The distribution of within‐colony dispersal directions was non‐uniform but did not differ from expectation given the spatial arrangement of nest‐sites. However, 10% of all 460 colour‐ringed adults that were located breeding had dispersed to a different colony. The maximum observed dispersal distance (170 km) was much smaller than the maximum distance surveyed (690 km). The distribution of among‐colony dispersal distances was again right‐skewed. Among‐colony dispersal was directional, and differed from random expectation and from the distribution of within‐colony dispersal directions. Non‐breeding season surveys suggested that the probability of detecting a colour‐ringed adult at its breeding location was high in the northeastern UK (98%). Estimated dispersal rates and distributions were therefore robust to incomplete detection. Overall, these data demonstrate skewed and directionally divergent dispersal distributions across small (within‐colony) and large (among‐colony) scales, indicating that dispersal could create genetic and demographic connectivity within the study area.  相似文献   

7.
Genetic data are often used to assess ‘population connectivity’ because it is difficult to measure dispersal directly at large spatial scales. Genetic connectivity, however, depends primarily on the absolute number of dispersers among populations, whereas demographic connectivity depends on the relative contributions to population growth rates of dispersal vs. local recruitment (i.e. survival and reproduction of residents). Although many questions are best answered with data on genetic connectivity, genetic data alone provide little information on demographic connectivity. The importance of demographic connectivity is clear when the elimination of immigration results in a shift from stable or positive population growth to negative population growth. Otherwise, the amount of dispersal required for demographic connectivity depends on the context (e.g. conservation or harvest management), and even high dispersal rates may not indicate demographic interdependence. Therefore, it is risky to infer the importance of demographic connectivity without information on local demographic rates and how those rates vary over time. Genetic methods can provide insight on demographic connectivity when combined with these local demographic rates, data on movement behaviour, or estimates of reproductive success of immigrants and residents. We also consider the strengths and limitations of genetic measures of connectivity and discuss three concepts of genetic connectivity that depend upon the evolutionary criteria of interest: inbreeding connectivity, drift connectivity, and adaptive connectivity. To conclude, we describe alternative approaches for assessing population connectivity, highlighting the value of combining genetic data with capture‐mark‐recapture methods or other direct measures of movement to elucidate the complex role of dispersal in natural populations.  相似文献   

8.
Quantifying population genetic structure is fundamental to testing hypotheses regarding gene flow, population divergence and dynamics across large spatial scales. In species with highly mobile life‐history stages, where it is unclear whether such movements translate into effective dispersal among discrete philopatric breeding populations, this approach can be particularly effective. We used seven nuclear microsatellite loci and mitochondrial DNA (ND2) markers to quantify population genetic structure and variation across 20 populations (447 individuals) of one such species, the European Shag, spanning a large geographical range. Despite high breeding philopatry, rare cross‐sea movements and recognized subspecies, population genetic structure was weak across both microsatellites and mitochondrial markers. Furthermore, although isolation‐by‐distance was detected, microsatellite variation provided no evidence that open sea formed a complete barrier to effective dispersal. These data suggest that occasional long‐distance, cross‐sea movements translate into gene flow across a large spatial scale. Historical factors may also have shaped contemporary genetic structure: cluster analyses of microsatellite data identified three groups, comprising colonies at southern, mid‐ and northern latitudes, and similar structure was observed at mitochondrial loci. Only one private mitochondrial haplotype was found among subspecies, suggesting that this current taxonomic subdivision may not be mirrored by genetic isolation.  相似文献   

9.
The distribution of suitable habitat influences natal and breeding dispersal at small spatial scales, resulting in strong microgeographic genetic structure. Although environmental variation can promote interpopulation differences in dispersal behavior and local spatial patterns, the effects of distinct ecological conditions on within‐species variation in dispersal strategies and in fine‐scale genetic structure remain poorly understood. We studied local dispersal and fine‐scale genetic structure in the thorn‐tailed rayadito (Aphrastura spinicauda), a South American bird that breeds along a wide latitudinal gradient. We combine capture‐mark‐recapture data from eight breeding seasons and molecular genetics to compare two peripheral populations with contrasting environments in Chile: Navarino Island, a continuous and low density habitat, and Fray Jorge National Park, a fragmented, densely populated and more stressful environment. Natal dispersal showed no sex bias in Navarino but was female‐biased in the more dense population in Fray Jorge. In the latter, male movements were restricted, and some birds seemed to skip breeding in their first year, suggesting habitat saturation. Breeding dispersal was limited in both populations, with males being more philopatric than females. Spatial genetic autocorrelation analyzes using 13 polymorphic microsatellite loci confirmed the observed dispersal patterns: a fine‐scale genetic structure was only detectable for males in Fray Jorge for distances up to 450 m. Furthermore, two‐dimensional autocorrelation analyzes and estimates of genetic relatedness indicated that related males tended to be spatially clustered in this population. Our study shows evidence for context‐dependent variation in natal dispersal and corresponding local genetic structure in peripheral populations of this bird. It seems likely that the costs of dispersal are higher in the fragmented and higher density environment in Fray Jorge, particularly for males. The observed differences in microgeographic genetic structure for rayaditos might reflect the genetic consequences of population‐specific responses to contrasting environmental pressures near the range limits of its distribution.  相似文献   

10.
Linking dispersal to population growth remains a challenging task and is a major knowledge gap, for example, for conservation management. We studied relative roles of different demographic rates behind population growth in Siberian flying squirrels in two nest‐box breeding populations in western Finland. Adults and offspring were captured and individually identifiable. We constructed an integrated population model, which estimated all relevant annual demographic rates (birth, local [apparent] survival, and immigration) as well as population growth rates. One population (studied 2002–2014) fluctuated around a steady‐state equilibrium, whereas the other (studied 1995–2014) showed a numerical decline. Immigration was the demographic rate which showed clear correlations to annual population growth rates in both populations. Population growth rate was density dependent in both populations. None of the demographic rates nor the population growth rate correlated across the two study populations, despite their proximity suggesting that factors regulating the dynamics are determined locally. We conclude that flying squirrels may persist in a network of uncoupled subpopulations, where movement between subpopulations is of critical importance. Our study supports the view that dispersal has the key role in population survival of a small forest rodent.  相似文献   

11.
Dispersal is a key process for the population dynamics of spatially structured populations (at local and metapopulation levels), so the understanding of the mechanisms underlying the movement of individuals in space and time is important for evolutionary and ecological studies. Here we analyzed, for the first time, a long‐term (1992–2009) multi‐site capture– recapture database collected at four local populations of a long‐lived seabird, the Audouin’s gull Larus audouinii, covering 90% of its total world population. Those local populations show different ecological and demographic features that allow us to assess the influence of several key factors involved in breeding dispersal patterns at large spatio‐temporal scales. A recently developed analytical tool in mark–recapture modelling, the multi‐event approach, allowed us to obtain separate departure and settlement probabilities and test different biological hypotheses for each step of the dispersal process. Our results revealed that site fidelity was the most common strategy among breeders, and dispersal was only high from the site with the lowest population size and habitat quality. However, departures from the two largest local populations increased over the study period in response to severe ecological perturbations. Dispersers chose different settlement patches depending on their site of origin, with settlement choices determined by the population size of the destination colony rather than by the local reproductive performance, foraging area (a proxy of food availability) or distance to the destination site. Our results indicate that a breeding site is not abandoned by breeders unless a series of cumulative perturbations occur; once dispersing, settlement is directed towards densely populated sites, with dispersers using population size to rapidly assess the quality of the breeding patch.  相似文献   

12.
Investigating the extent (or the existence) of local adaptation is crucial to understanding how populations adapt. When experiments or fitness measurements are difficult or impossible to perform in natural populations, genomic techniques allow us to investigate local adaptation through the comparison of allele frequencies and outlier loci along environmental clines. The thick‐billed murre (Uria lomvia) is a highly philopatric colonial arctic seabird that occupies a significant environmental gradient, shows marked phenotypic differences among colonies, and has large effective population sizes. To test whether thick‐billed murres from five colonies along the eastern Canadian Arctic coast show genomic signatures of local adaptation to their breeding grounds, we analyzed geographic variation in genome‐wide markers mapped to a newly assembled thick‐billed murre reference genome. We used outlier analyses to detect loci putatively under selection, and clustering analyses to investigate patterns of differentiation based on 2220 genomewide single nucleotide polymorphisms (SNPs) and 137 outlier SNPs. We found no evidence of population structure among colonies using all loci but found population structure based on outliers only, where birds from the two northernmost colonies (Minarets and Prince Leopold) grouped with birds from the southernmost colony (Gannet), and birds from Coats and Akpatok were distinct from all other colonies. Although results from our analyses did not support local adaptation along the latitudinal cline of breeding colonies, outlier loci grouped birds from different colonies according to their non‐breeding distributions, suggesting that outliers may be informative about adaptation and/or demographic connectivity associated with their migration patterns or nonbreeding grounds.  相似文献   

13.
While the factors influencing reproduction and survival in colonial populations are relatively well studied, factors involved in dispersal and settlement decisions are not well understood. The present study investigated exchanges of great cormorants Phalacrocorax carbo sinensis among six breeding colonies over a 13‐year period when the breeding population in Denmark increased from 2800 to 36 400 nests. We used a multistate capture‐recapture model that combined multisite resightings and recoveries to examine simultaneously recruitment, natal dispersal, breeding dispersal and annual survival of first‐year, immature and breeding great cormorants. Mean survival of first‐year birds (0.50±0.09, range=0.42–0.66 among colonies) was lower than survival of breeders (0.90±0.06, range=0.81–0.97). Mean survival of immature birds over the study period was 0.87±0.08. Dispersal from a colony increased with decreasing mean brood size in the colony in both first‐time and experienced breeders. The choice of the settlement colony in first‐time breeders was affected by conditions in the natal colony and in the colonies prospected during the pre‐breeding years. In particular, first‐time breeders recruited to colonies where they could expect better breeding success. Experienced breeders relied mainly on cues present early in the season and on their own breeding experience to choose a new breeding colony. Newly established colonies resulted mainly from the immigration of first‐time breeders originating from denser colonies. Dispersal was distance‐dependent and first‐time breeders dispersed longer distances than breeders. We suggest that the prospecting behaviour allows first‐time breeders to recruit in nearby as well as more distant potential breeding colonies. Dispersing breeders preferred to settle in neighbouring colonies likely to benefit from their experience with foraging areas. We discuss the importance of these movements for growth and expansion of the breeding population.  相似文献   

14.
Dramatic local population decline brought about by anthropogenic-driven change is an increasingly common threat to biodiversity. Seabird life history traits make them particularly vulnerable to such change; therefore, understanding population connectivity and dispersal dynamics is vital for successful management. Our study used a 357-base pair mitochondrial control region locus sequenced for 103 individuals and 18 nuclear microsatellite loci genotyped for 245 individuals to investigate population structure in the Atlantic and Pacific populations of the pelagic seabird, Leach's storm-petrel Oceanodroma leucorhoa leucorhoa. This species is under intense predation pressure at one regionally important colony on St Kilda, Scotland, where a disparity between population decline and predation rates hints at immigration from other large colonies. AMOVA, F(ST), Φ(ST) and Bayesian cluster analyses revealed no genetic structure among Atlantic colonies (Global Φ(ST) = -0.02 P > 0.05, Global F(ST) = 0.003, P > 0.05, STRUCTURE K = 1), consistent with either contemporary gene flow or strong historical association within the ocean basin. The Pacific and Atlantic populations are genetically distinct (Global Φ(ST) = 0.32 P < 0.0001, Global F(ST) = 0.04, P < 0.0001, STRUCTURE K = 2), but evidence for interocean exchange was found with individual exclusion/assignment and population coalescent analyses. These findings highlight the importance of conserving multiple colonies at a number of different sites and suggest that management of this seabird may be best viewed at an oceanic scale. Moreover, our study provides an illustration of how long-distance movement may ameliorate the potentially deleterious impacts of localized environmental change, although direct measures of dispersal are still required to better understand this process.  相似文献   

15.
We documented natal and breeding dispersal at several spatial scales by Galápagos Nazca boobies Sula granti, a wide‐ranging pelagic seabird. We found exceptionally low degrees of both types of dispersal despite these birds’ vagility. Median natal dispersal distances were 26 m and 105 m for males and females, respectively. Median breeding dispersal distances for both sexes were 0 m. No natal or breeding dispersals occurred from our study site at Punta Cevallos, Isla Española to six other colonies in the Galápagos, but we did document four long‐distance natal dispersals from Punta Cevallos to islands near the South American coast. Recaptures and dead recoveries of ringed birds showed long distance non‐breeding movements to the Central American coast and elsewhere in the eastern Pacific, contrasting with the very limited dispersal to breeding sites.  相似文献   

16.
Aims Our study aimed to characterize the dispersal dynamics and population genetic structure of the introduced golden mussel Limnoperna fortunei throughout its invaded range in South America and to determine how different dispersal methods, that is, human‐mediated dispersal and downstream natural dispersal, contribute to genetic variation among populations. Location Paraná–Uruguay–Río de la Plata watershed in Argentina, Brazil, Paraguay and Uruguay. Methods We performed genetic analyses based on a comprehensive sampling strategy encompassing 22 populations (N = 712) throughout the invaded range in South America, using the mitochondrial cytochrome c oxidase subunit I (COI) gene and eight polymorphic nuclear microsatellites. We employed both population genetics and phylogenetic analyses to clarify the dispersal dynamics and population genetic structure. Results We detected relatively high genetic differentiation between populations (FST = ?0.041 to 0.111 for COI, ?0.060 to 0.108 for microsatellites) at both fine and large geographical scales. Bayesian clustering and three‐dimensional factorial correspondence analyses consistently revealed two genetically distinct clusters, highlighting genetic discontinuities in the invaded range. Results of all genetic analyses suggest ship‐mediated ‘jump’ dispersal as the dominant mode of spread of golden mussels in South America, while downstream natural dispersal has had limited effects on contemporary genetic patterns. Main conclusions Our study provides new evidence that post‐establishment dispersal dynamics and genetic patterns vary across geographical scales. While ship‐mediated ‘jump’ dispersal dominates post‐establishment spread of golden mussels in South America, once colonies become established in upstream locations, larvae produced may be advected downstream to infill patchy distributions. Moreover, genetic structuring at fine geographical scales, especially within the same drainages, suggests a further detailed understanding of dynamics of larval dispersal and settlement in different water systems. Knowledge of the mechanisms by which post‐establishment spread occurs can, in some cases, be used to limit dispersal of golden mussels and other introduced species.  相似文献   

17.
The existence of an active behavioral research program using animals in primate breeding colonies was considered to be not only a compatable multiple use of animals, but a way of materially improving the management and efficiency of the breeding colonies. In colonies of monkeys specifically established for behavioral research programs directed at the examination of social relationships, incidental breeding resulted in levels of reproductive success equivalent to or greater than that normally experienced in colonies devoted entirely to breeding. Behavioral research revealed patterns of seasonality, fostering, kidnapping, and infant care which would otherwise have escaped notice and which would significantly influence culling and management choices in a breeding colony. Many young males and certain low ranking adult males actively contributed to reproduction. Females born and reared in the colonies were the most productive, exceeding wild born or other introduced females in reproductive efficiency. Specific recommendations for establishing, expanding and culling of nonhuman primate breeding colonies were derived from the behavioral research.  相似文献   

18.
Dispersal is a critical driver of gene flow, with important consequences for population genetic structure, social interactions and other biological processes. Limited dispersal may result in kin‐structured populations in which kin selection may operate, but it may also increase the risk of kin competition and inbreeding. Here, we use a combination of long‐term field data and molecular genetics to examine dispersal patterns and their consequences for the population genetics of a highly social bird, the sociable weaver (Philetairus socius), which exhibits cooperation at various levels of sociality from nuclear family groups to its unique communal nests. Using 20 years of data, involving capture of 6508 birds and 3151 recaptures at 48 colonies, we found that both sexes exhibit philopatry and that any dispersal occurs over relatively short distances. Dispersal is female‐biased, with females dispersing earlier, further, and to less closely related destination colonies than males. Genotyping data from 30 colonies showed that this pattern of dispersal is reflected by fine‐scale genetic structure for both sexes, revealed by isolation by distance in terms of genetic relatedness and significant genetic variance among colonies. Both relationships were stronger among males than females. Crucially, significant relatedness extended beyond the level of the colony for both sexes. Such fine‐scale population genetic structure may have played an important role in the evolution of cooperative behaviour in this species, but it may also result in a significant inbreeding risk, against which female‐biased dispersal alone is unlikely to be an effective strategy.  相似文献   

19.
When organisms with similar phenotypes have conflicting management and conservation initiatives, approaches are needed to differentiate among subpopulations or discrete groups. For example, the eastern metapopulation of the double‐crested cormorant (Phalacrocorax auritus) has a migratory phenotype that is culled because they are viewed as a threat to commercial and natural resources, whereas resident birds are targeted for conservation. Understanding the distinct breeding habitats of resident versus migratory cormorants would aid in identification and management decisions. Here, we use species distribution models (SDM: Maxent) of cormorant nesting habitat to examine the eastern P. auritus metapopulation and the predicted breeding sites of its phenotypes. We then estimate the phenotypic identity of breeding colonies of cormorants where management plans are being developed. We transferred SDMs trained on data from resident bird colonies in Florida and migratory bird colonies in Minnesota to South Carolina in an effort to identify the phenotype of breeding cormorants there based on the local landscape characteristics. Nesting habitat characteristics of cormorant colonies in South Carolina more closely resembled those of the Florida phenotype than those of birds of the Minnesota phenotype. The presence of the resident phenotype in summer suggests that migratory and resident cormorants will co‐occur in South Carolina in winter. Thus, there is an opportunity for separate management strategies for the two phenotypes in that state. We found differences in nesting habitat characteristics that could be used to refine management strategies and reduce human conflicts with abundant winter migrants and, at the same time, conserve less common colonies of resident cormorants. The models we use here show potential for advancing the study of geographically overlapping phenotypes with differing conservation and management priorities.  相似文献   

20.
ABSTRACT We studied breeding dispersal of double-crested cormorants (Phalacrocorax auritus) associated with management practices that suppressed their reproduction on Lake Champlain in the northeastern United States. We implemented an experiment on one colony by spraying corn oil on cormorant eggs in portions of the colony and leaving other portions untreated. Gulls (Larus spp.) consumed cormorant eggs during the oiling process, but we reduced and then eliminated predation levels after the first year of the study. We used mark-recapture techniques within the experimental framework to measure rates of breeding dispersal for cormorants from the experimental colony and an unmanaged colony in Lake Champlain. Egg oiling increased the movement rate to the unmanaged colony by 3% during the year with no egg predation by gulls. When gulls depredated cormorant eggs at high rates during egg oiling, movement to the unmanaged colony increased by 20%. When cormorants are managed to reduce population sizes, methods that limit dispersal away from the managed colony may be most effective. Such methods would mitigate effects to nontarget populations and allow for a greater portion of the metapopulation to be managed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号