首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Fire and the Miocene expansion of C4 grasslands   总被引:4,自引:0,他引:4  
C4 photosynthesis had a mid‐Tertiary origin that was tied to declining atmospheric CO2, but C4‐dominated grasslands did not appear until late Tertiary. According to the ‘CO2‐threshold’ model, these C4 grasslands owe their origin to a further late Miocene decline in CO2 that gave C4 grasses a photosynthetic advantage. This model is most appropriate for explaining replacement of C3 grasslands by C4 grasslands, however, fossil evidence shows C4 grasslands replaced woodlands. An additional weakness in the threshold model is that recent estimates do not support a late Miocene drop in pCO2. We hypothesize that late Miocene climate changes created a fire climate capable of replacing woodlands with C4 grasslands. Critical elements were seasonality that sustained high biomass production part of year, followed by a dry season that greatly reduced fuel moisture, coupled with a monsoon climate that generated abundant lightning‐igniting fires. As woodlands became more open from burning, the high light conditions favoured C4 grasses over C3 grasses, and in a feedback process, the elevated productivity of C4 grasses increased highly combustible fuel loads that further increased fire activity. This hypothesis is supported by paleosol data that indicate the late Miocene expansion of C4 grasslands was the result of grassland expansion into more mesic environments and by charcoal sediment profiles that parallel the late Miocene expansion of C4 grasslands. Many contemporary C4 grasslands are fire dependent and are invaded by woodlands upon cessation of burning. Thus, we maintain that the factors driving the late Miocene expansion of C4 were the same as those responsible for maintenance of C4 grasslands today.  相似文献   

2.
C4 photosynthesis, atmospheric CO2, and climate   总被引:22,自引:0,他引:22  
The objectives of this synthesis are (1) to review the factors that influence the ecological, geographical, and palaeoecological distributions of plants possessing C4 photosynthesis and (2) to propose a hypothesis/model to explain both the distribution of C4 plants with respect to temperature and CO2 and why C4 photosynthesis is relatively uncommon in dicotyledonous plants (hereafter dicots), especially in comparison with its widespread distribution in monocotyledonous species (hereafter monocots). Our goal is to stimulate discussion of the factors controlling distributions of C4 plants today, historically, and under future elevated CO2 environments. Understanding the distributions of C3/C4 plants impacts not only primary productivity, but also the distribution, evolution, and migration of both invertebrates and vertebrates that graze on these plants. Sixteen separate studies all indicate that the current distributions of C4 monocots are tightly correlated with temperature: elevated temperatures during the growing season favor C4 monocots. In contrast, the seven studies on C4 dicot distributions suggest that a different environmental parameter, such as aridity (combination of temperature and evaporative potential), more closely describes their distributions. Differences in the temperature dependence of the quantum yield for CO2 uptake (light-use efficiency) of C3 and C4 species relate well to observed plant distributions and light-use efficiency is the only mechanism that has been proposed to explain distributional differences in C3/C4 monocots. Modeling of C3 and C4 light-use efficiencies under different combinations of atmospheric CO2 and temperature predicts that C4-dominated ecosystems should not have expanded until atmospheric CO2 concentrations reached the lower levels that are thought to have existed beginning near the end of the Miocene. At that time, palaeocarbonate and fossil data indicate a simultaneous, global expansion of C4-dominated grasslands. The C4 monocots generally have a higher quantum yield than C4 dicots and it is proposed that leaf venation patterns play a role in increasing the light-use efficiency of most C4 monocots. The reduced quantum yield of most C4 dicots is consistent with their rarity, and it is suggested that C4 dicots may not have been selected until CO2 concentrations reached their lowest levels during glacial maxima in the Quaternary. Given the intrinsic light-use efficiency advantage of C4 monocots, C4 dicots may have been limited in their distributions to the warmest ecosystems, saline ecosystems, and/or to highly disturbed ecosystems. All C4 plants have a significant advantage over C3 plants under low atmospheric CO2 conditions and are predicted to have expanded significantly on a global scale during full-glacial periods, especially in tropical regions. Bog and lake sediment cores as well as pedogenic carbonates support the hypothesis that C4 ecosystems were more extensive during the last glacial maximum and then decreased in abundance following deglaciation as atmospheric CO2 levels increased. Received: 12 February 1997 / Accepted: 20 June 1997  相似文献   

3.
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought‐tolerant biomes in the tropics. These features are broadly consistent with pollen‐based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought‐tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low‐latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial‐interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.  相似文献   

4.
The mid‐Cenozoic decline of atmospheric CO2 levels that promoted global climate change was critical to shaping contemporary arid ecosystems. Within angiosperms, two CO2‐concentrating mechanisms (CCMs)—crassulacean acid metabolism (CAM) and C4—evolved from the C3 photosynthetic pathway, enabling more efficient whole‐plant function in such environments. Many angiosperm clades with CCMs are thought to have diversified rapidly due to Miocene aridification, but links between this climate change, CCM evolution, and increased net diversification rates (r) remain to be further understood. Euphorbia (~2000 species) includes a diversity of CAM‐using stem succulents, plus a single species‐rich C4 subclade. We used ancestral state reconstructions with a dated molecular phylogeny to reveal that CCMs independently evolved 17–22 times in Euphorbia, principally from the Miocene onwards. Analyses assessing among‐lineage variation in r identified eight Euphorbia subclades with significantly increased r, six of which have a close temporal relationship with a lineage‐corresponding CCM origin. Our trait‐dependent diversification analysis indicated that r of Euphorbia CCM lineages is approximately threefold greater than C3 lineages. Overall, these results suggest that CCM evolution in Euphorbia was likely an adaptive strategy that enabled the occupation of increased arid niche space accompanying Miocene expansion of arid ecosystems. These opportunities evidently facilitated recent, replicated bursts of diversification in Euphorbia.  相似文献   

5.
Terrestrial higher plants exchange large amounts of CO2 with the atmosphere each year; c. 15% of the atmospheric pool of C is assimilated in terrestrial-plant photosynthesis each year, with an about equal amount returned to the atmosphere as CO2 in plant respiration and the decomposition of soil organic matter and plant litter. Any global change in plant C metabolism can potentially affect atmospheric CO2 content during the course of years to decades. In particular, plant responses to the presently increasing atmospheric CO2 concentration might influence the rate of atmospheric CO2 increase through various biotic feedbacks. Climatic changes caused by increasing atmospheric CO2 concentration may modulate plant and ecosystem responses to CO2 concentration. Climatic changes and increases in pollution associated with increasing atmospheric CO2 concentration may be as significant to plant and ecosystem C balance as CO2 concentration itself. Moreover, human activities such as deforestation and livestock grazing can have impacts on the C balance and structure of individual terrestrial ecosystems that far outweigh effects of increasing CO2 concentration and climatic change. In short-term experiments, which in this case means on the order of 10 years or less, elevated atmospheric CO2 concentration affects terrestrial higher plants in several ways. Elevated CO2 can stimulate photosynthesis, but plants may acclimate and (or) adapt to a change in atmospheric CO2 concentration. Acclimation and adaptation of photosynthesis to increasing CO2 concentration is unlikely to be complete, however. Plant water use efficiency is positively related to CO2 concentration, implying the potential for more plant growth per unit of precipitation or soil moisture with increasing atmospheric CO2 concentration. Plant respiration may be inhibited by elevated CO2 concentration, and although a naive C balance perspective would count this as a benefit to a plant, because respiration is essential for plant growth and health, an inhibition of respiration can be detrimental. The net effect on terrestrial plants of elevated atmospheric CO2 concentration is generally an increase in growth and C accumulation in phytomass. Published estimations, and speculations about, the magnitude of global terrestrial-plant growth responses to increasing atmospheric CO2 concentration range from negligible to fantastic. Well-reasoned analyses point to moderate global plant responses to CO2 concentration. Transfer of C from plants to soils is likely to increase with elevated CO2 concentrations because of greater plant growth, but quantitative effects of those increased inputs to soils on soil C pool sizes are unknown. Whether increases in leaf-level photosynthesis and short-term plant growth stimulations caused by elevated atmospheric CO2 concentration will have, by themselves, significant long-term (tens to hundreds of years) effects on ecosystem C storage and atmospheric CO2 concentration is a matter for speculation, not firm conclusion. Long-term field studies of plant responses to elevated atmospheric CO2 are needed. These will be expensive, difficult, and by definition, results will not be forthcoming for at least decades. Analyses of plants and ecosystems surrounding natural geological CO2 degassing vents may provide the best surrogates for long-term controlled experiments, and therefore the most relevant information pertaining to long-term terrestrial-plant responses to elevated CO2 concentration, but pollutants associated with the vents are a concern in some cases, and quantitative knowledge of the history of atmospheric CO2 concentrations near vents is limited. On the whole, terrestrial higher-plant responses to increasing atmospheric CO2 concentration probably act as negative feedbacks on atmospheric CO2 concentration increases, but they cannot by themselves stop the fossil-fuel-oxidation-driven increase in atmospheric CO2 concentration. And, in the very long-term, atmospheric CO2 concentration is controlled by atmosphere-ocean C equilibrium rather than by terrestrial plant and ecosystem responses to atmospheric CO2 concentration.  相似文献   

6.
Abstract: C4 photosynthesis is an evolutionary solution to high rates of photorespiration and low kinetic efficiency of Rubisco in CO2‐depleted atmospheres of recent geologic time. About 7500 plant species are C4, in contrast to 30 000 CAM and 250 000 C3 species. All C4 plants occur in approximately 90 genera from 18 angiosperm families. In all of these families, the C4 pathway evolved independently. In many, multiple independent origins have occurred, such that over 30 distinct evolutionary origins of the C4 pathway are recognized. Fossil and carbon isotope evidence show that the C4 syndrome is at least 12 to 15 million years old, although estimates based on molecular sequence comparisons indicate it is over 20 million years old. The evolutionary radiation of herbaceous angiosperms may have been required for C4 plant evolution. All C4 species occur in advanced angiosperm families that appeared in the fossil record in the past 70 million years. Most of these families diversified in terms of genera and species numbers between 20 to 40 million years ago, during a period of global cooling, atmospheric CO2 reduction and aridification. During the period of diversification, numerous traits arose in the C3 flora that enhanced their performance in arid environments and atmospheres of reduced CO2. Some of these traits may have predisposed certain taxa to develop the C4 pathway once atmospheric CO2 levels declined to a point where the ability to concentrate CO2 had a selective advantage. Leading traits in C3 plants that may have facilitated the initial transition to C4 photosynthesis include close vein spacing and an enlargement of the bundle sheath cell layer to form a Kranz‐like anatomy. Ecological factors not directly connected with photosynthesis probably also played a role. For example, extensive ecological disturbance may have been needed to convert C3‐dominated woodlands into open, high‐light habitats where herbaceous C4 plants could succeed. Disturbances in the form of fire, and browsing by large mammals, increase during the time of C4 plant evolution and diversification. Fire increased because of the drying climate, while browsing increased with the evolutionary diversification of the mammalian megafauna in the Oligocene and Miocene epochs. In summary, the origin of C4 plants is hypothesized to have resulted from a novel combination of environmental and phylogenetic developments that, for the first time, established the preconditions required for C4 plant evolution.  相似文献   

7.
C4 photosynthetic physiologies exhibit fundamentally different responses to temperature and atmospheric CO2 partial pressures (pCO2) compared to the evolutionarily more primitive C3 type. All else being equal, C4 plants tend to be favored over C3 plants in warm humid climates and, conversely, C3 plants tend to be favored over C4 plants in cool climates. Empirical observations supported by a photosynthesis model predict the existence of a climatological crossover temperature above which C4 species have a carbon gain advantage and below which C3 species are favored. Model calculations and analysis of current plant distribution suggest that this pCO2-dependent crossover temperature is approximated by a mean temperature of 22°C for the warmest month at the current pCO2 (35 Pa). In addition to favorable temperatures, C4 plants require sufficient precipitation during the warm growing season. C4 plants which are predominantly graminoids of short stature can be competitively excluded by trees (nearly all C3 plants) – regardless of the photosynthetic superiority of the C4 pathway – in regions otherwise favorable for C4. To construct global maps of the distribution of C4 grasses for current, past and future climate scenarios, we make use of climatological data sets which provide estimates of the mean monthly temperature to classify the globe into areas which should favor C4 photosynthesis during at least 1 month of the year. This area is further screened by excluding areas where precipitation is <25 mm per month during the warm season and by selecting areas classified as grasslands (i.e., excluding areas dominated by woody vegetation) according to a global vegetation map. Using this approach, grasslands of the world are designated as C3, C4, and mixed under current climate and pCO2. Published floristic studies were used to test the accuracy of these predictions in many regions of the world, and agreement with observations was generally good. We then make use of this protocol to examine changes in the global abundance of C4 grasses in the past and the future using plausible estimates for the climates and pCO2. When pCO2 is lowered to pre-industrial levels, C4 grasses expanded their range into large areas now classified as C3 grasslands, especially in North America and Eurasia. During the last glacial maximum (∼18 ka BP) when the climate was cooler and pCO2 was about 20 Pa, our analysis predicts substantial expansion of C4 vegetation – particularly in Asia, despite cooler temperatures. Continued use of fossil fuels is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming. Our analysis predicts a substantial reduction in the area of C4 grasses under these conditions. These reductions from the past and into the future are based on greater stimulation of C3 photosynthetic efficiency by higher pCO2 than inhibition by higher temperatures. The predictions are testable through large-scale controlled growth studies and analysis of stable isotopes and other data from regions where large changes are predicted to have occurred. Received: 3 July 1997 / Accepted: 3 December 1997  相似文献   

8.
In this review, I first address the basics of gas exchange, water‐use efficiency and carbon isotope discrimination in C3 plant canopies. I then present a case study of water‐use efficiency in northern Australian tree species. In general, C3 plants face a trade‐off whereby increasing stomatal conductance for a given set of conditions will result in a higher CO2 assimilation rate, but a lower photosynthetic water‐use efficiency. A common garden experiment suggested that tree species which are able to establish and grow in drier parts of northern Australia have a capacity to use water rapidly when it is available through high stomatal conductance, but that they do so at the expense of low water‐use efficiency. This may explain why community‐level carbon isotope discrimination does not decrease as steeply with decreasing rainfall on the North Australian Tropical Transect as has been observed on some other precipitation gradients. Next, I discuss changes in water‐use efficiency that take place during leaf expansion in C3 plant leaves. Leaf phenology has recently been recognised as a significant driver of canopy gas exchange in evergreen forest canopies, and leaf expansion involves changes in both photosynthetic capacity and water‐use efficiency. Following this, I discuss the role of woody tissue respiration in canopy gas exchange and how photosynthetic refixation of respired CO2 can increase whole‐plant water‐use efficiency. Finally, I discuss the role of water‐use efficiency in driving terrestrial plant responses to global change, especially the rising concentration of atmospheric CO2. In coming decades, increases in plant water‐use efficiency caused by rising CO2 are likely to partially mitigate impacts on plants of drought stress caused by global warming.  相似文献   

9.
高大气CO2浓度下氮素对小麦叶片光能利用的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
关于氮素对高大气CO2浓度下C3植物光合作用适应现象的调节机理已有较为深入的研究, 但对其光合作用适应现象的光合能量转化和分配机制缺乏系统分析。该文以大气CO2浓度和施氮量为处理手段, 通过测定小麦(Triticum aestivum)抽穗期叶片的光合作用-胞间CO2浓度响应曲线以及荧光动力学参数来测算光合电子传递速率和分配去向, 研究了长期高大气CO2浓度下小麦叶片光合电子传递和分配对施氮量的响应。结果表明, 与正常大气CO2浓度处理相比, 高大气CO2浓度下小麦叶片较多的激发能以热量的形式耗散, 增施氮素可使更多的激发能向光化学反应方向的分配, 降低光合能量的热耗散速率; 大气CO2浓度升高后小麦叶片光化学淬灭系数无明显变化, 高氮叶片的非光化学猝灭降低而低氮叶片明显升高, 施氮促进PSII反应中心的开放比例, 降低光能的热耗散; 高大气CO2浓度下高氮叶片通过PSII反应中心的光合电子传递速率(JF)较高, 而且参与光呼吸的非环式电子流速率(J0)显著降低, 较正常大气CO2浓度处理的高氮叶片下降了88.40%, 光合速率增加46.47%; 高大气CO2浓度下小麦叶片JF-J0升高而J0/JF显著下降, 光呼吸耗能被抑制, 更多的光合电子分配至光合还原过程。因此, 大气CO2浓度增高条件下, 小麦叶片激发能的热耗散速率增加, 但增施氮素后小麦叶片PSII反应中心开放比例提高, 光化学速率增加, 进入PSII反应中心的电子流速率明显升高, 光呼吸作用被抑制, 光合电子较多地进入光化学过程, 这可能是高氮条件下光合作用适应性下调被缓解的一个原因。  相似文献   

10.
Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus‐based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter‐annual variation in detritus‐based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus‐based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter‐annual variation in plant production response to elevated atmospheric CO2.  相似文献   

11.
12.
The current dramatic increase in atmospheric CO2 concentration favours C3 versus C4 photosynthesis, and although other aspects of environmental conditions come into play, it implies an uncertain future for C4 grasses. If it has been suggested that the poor quality of C4 grasses contributed to large mammalian herbivores declines as C4 grasslands spread from the late Miocene, these investigations of the past have not been matched by a similar attention focused on the future implications of C4 to C3 shifts. Here we discuss how these may affect grazing systems, also considering other aspects of C3/C4 differences (productivity, phenology) which might affect herbivore performance. Current knowledge suggests that important changes in herbivore performance could be observed, but is too fragmentary to allow general quantitative conclusions. We urge plant and herbivore ecologists to collectively address these limitations, as the future of grazing systems has important implications for biodiversity and human livelihoods.  相似文献   

13.
During the Pleistocene the vegetation changes in the high Colombian Andes included changes from C3 to C4 plants. This is inferred from δ13C values of the C31 n-alkane from the Funza-2 sedimentary record taken from the high plain of Bogotá at 2550 m elevation. The environmental factors thought to be responsible for these changes were investigated using a single point simulation of the BIOME3 vegetation model, including changes in precipitation, temperature and atmospheric CO2 concentrations. The model shows that changes are for a major part caused by these latter two factors. The isotopic signature of the n-alkanes of several extant C3 and C4 grasses from the area were determined to calibrate the interpretation of the isotopic record. From the geochemical record, we estimated the altitudinal distribution of C3 and C4 plants, using present grass distribution patterns based on floristic data as a template. This information, in combination with palaeotemperature estimates, enabled the reconstruction of atmospheric CO2 concentrations. The reconstructed CO2 concentrations follow the trends of the Vostok Antarctic ice core through three glacial and two interglacial stages. The lowest calculated CO2 concentration is ca. 210 ppmV for the glacial maxima and within the range of lowest values from Vostok, our highest value (310 ppmV) is for interglacial MIS 7. This represents a new method to reconstruct palaeoatmospheric pCO2. It is less accurate than measurements from ice cores, but has potential to be used for sediments that are much older than the ice cores.  相似文献   

14.
Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C3 plants, while for the diet of leporids, more than 16% of plant species are identified as C4 (31% species are from Poaceae). The ability of several leporid species to consume C4 plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C4 plants in the late Miocene, the so-called ‘nature’s green revolution’, induced by global environmental change, is suggested to be one of the major ‘ecological opportunities’, which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of leporids.  相似文献   

15.
Plants often respond to elevated atmospheric CO2 levels with reduced tissue nitrogen concentrations relative to ambient CO2-grown plants when comparisons are made at a common time. Another common response to enriched CO2 atmospheres is an acceleration in plant growth rates. Because plant nitrogen concentrations are often highest in seedlings and subsequently decrease during growth, comparisons between ambient and elevated CO2-grown plants made at a common time may not demonstrate CO2-induced reductions in plant nitrogen concentration per se. Rather, this comparison may be highlighting differences in nitrogen concentration between bigger, more developed plants and smaller, less developed plants. In this study, we directly examined whether elevated CO2 environments reduce plant nitrogen concentrations independent of changes in plant growth rates. We grew two annual plant species. Abutilon theophrasti (C3 photosynthetic pathway) and Amaranthus retroflexus (C4 photosynthetic pathway), from seed in glass-sided growth chambers with atmospheric CO2 levels of 350 mol·mol–1 or 700 mol·mol–1 and with high or low fertilizer applications. Individual plants were harvested every 2 days starting 3 days after germination to determine plant biomass and nitrogen concentration. We found: 1. High CO2-grown plants had reduced nitrogen concentrations and increased biomass relative to ambient CO2-grown plants when compared at a common time; 2. Tissue nitrogen concentrations did not vary as a function of CO2 level when plants were compared at a common size; and 3. The rate of biomass accumulation per rate of increase in plant nitrogen was unaffected by CO2 availability, but was altered by nutrient availability. These results indicate that a CO2-induced reduction in plant nitrogen concentration may not be due to physiological changes in plant nitrogen use efficiency, but is probably a size-dependent phenomenon resulting from accelerated plant growth.  相似文献   

16.
Adverse climate change attributed to elevated atmospheric carbon dioxide concentration (CO2) and increased temperature components of global warming has been a central issue affecting economic and social development. Climate change, particularly global warming, imposes a severe impact on the terrestrial ecosystem. Elevated CO2, drought, and high temperature have been extensively documented individually; however, relatively little is known about how plants respond to the interaction of these factors. To summarize current knowledge on the response of plants to global change factors, we focus on the interactive effects of CO2 enrichment, warming, and drought on plant growth, carbon allocation, and photosynthesis. Stimulation due to elevated CO2 might be suppressed under other negative climatic/environmental stresses such as drought, high temperature, and their combination. However, elevated CO2 could alleviate deleterious effects of moderate drought via reducing stomatal conductance, altering leaf surface, and regulating gene expression. High CO2 levels and rising temperatures may result in opposite responses in plant water use efficiency. Stimulation of plant growth due to elevated CO2 for C3 species occurs regardless of water conditions, but only under a water deficit for C4 species. The positive effect of elevated CO2 on C4 species is derived mainly from the improved water status. Plant adaptive or maladaptive responses to multivariate environments are interactive; thus, researchers need to explore the ecological underpinnings involved in such responses to the multiple factors involved in climate change.  相似文献   

17.
The effects of elevated atmospheric CO2 concentration on plant-fungi and plant-insect interactions were studied in an emergent marsh in the Chesapeake Bay. Stands of the C3 sedge Scirpus olneyi Grey, and the C4 grass Spartina patens (Ait.) Muhl. have been exposed to elevated atmospheric CO2 concentrations during each growing season since 1987. In August 1991 the severities of fungal infections and insect infestations were quantified. Shoot nitrogen concentration ([N]) and water content (WC) were determined. In elevated concentrations of atmospheric CO2, 32% fewer S. olneyi plants were infested by insects, and there was a 37% reduction in the severity of a pathogenic fungal infection, compared with plants grown in ambient CO2 concentrations. S. olneyi also had reduced [N], which correlated positively with the severities of fungal infections and insect infestations. Conversely, S. patens had increased WC but unchanged [N] in elevated concentrations of atmospheric CO2 and the severity of fungal infection increased. Elevated atmospheric CO2 concentration increased or decreased the severity of fungal infection depending on at least two interacting factors, [N] and WC; but it did not change the number of plants that were infected with fungi. In contrast, the major results for insects were that the number of plants infected with insects decreased, and that the amount of tissue that each insect ate also decreased.  相似文献   

18.
The fitness of natural enemies should be altered in response to changes in herbivore quality induced by the impact of increased atmospheric CO2 levels on plants. We studied the effect of different CO2 levels on the aphid predator Episyrphus balteatus DeGeer fed either specialist or generalist aphids reared on either of two host plants under laboratory conditions. In the host plant that contains sinigrin (black mustard), elevated CO2 increased the sinigrin content of both host plant and the specialist aphid, but reduced the already very low levels in the generalist aphid. Predator development time increased with elevated CO2, while fecundity decreased. Consequently, individual fitness decreased slightly with increasing atmospheric CO2. Sinigrin significantly decreased fecundity and increased development time of the predator. As a result, fitness was significantly lower too. The consumption rate was influenced significantly by plant and prey solely and the interactions of host plant × prey type and CO2 level × prey type. Further research on the effects of climate change parameters (e.g. greenhouse gases such as CO2, ozone (O3) and nitrogen dioxide (NO2), etc.) separately and jointly under controlled environmental conditions will help to understand the nature and direction of their effects on natural enemies as part of the tritrophic system.  相似文献   

19.
Grasses are hyper-accumulators of silicon (Si), which they acquire from the soil and deposit in tissues to resist environmental stresses. Given the high metabolic costs of herbivore defensive chemicals and structural constituents (e.g. cellulose), grasses may substitute Si for these components when carbon is limited. Indeed, high Si uptake grasses evolved in the Miocene when atmospheric CO2 concentration was much lower than present levels. It is, however, unknown how pre-industrial CO2 concentrations affect Si accumulation in grasses. Using Brachypodium distachyon, we hydroponically manipulated Si-supply (0.0, 0.5, 1, 1.5, 2 mM) and grew plants under Miocene (200 ppm) and Anthropocene levels of CO2 comprising ambient (410 ppm) and elevated (640 ppm) CO2 concentrations. We showed that regardless of Si treatments, the Miocene CO2 levels increased foliar Si concentrations by 47% and 56% relative to plants grown under ambient and elevated CO2, respectively. This is owing to higher accumulation overall, but also the reallocation of Si from the roots into the shoots. Our results suggest that grasses may accumulate high Si concentrations in foliage when carbon is less available (i.e. pre-industrial CO2 levels) but this is likely to decline under future climate change scenarios, potentially leaving grasses more susceptible to environmental stresses.  相似文献   

20.
The quantum yields of C3 and C4 plants from a number of genera and families as well as from ecologically diverse habitats were measured in normal air of 21% O2 and in 2% O2. At 30 C, the quantum yields of C3 plants averaged 0.0524 ± 0.0014 mol CO2/absorbed einstein and 0.0733 ± 0.0008 mol CO2/absorbed einstein under 21 and 2% O2. At 30 C, the quantum yields of C4 plants averaged 0.0534 ± 0.0009 mol CO2/absorbed einstein and 0.0538 ± 0.0011 mol CO2/absorbed einstein under 21 and 2% O2. At 21% O2, the quantum yield of a C3 plant is shown to be strongly dependent on both the intercellular CO2 concentration and leaf temperature. The quantum yield of a C4 plant, which is independent of the intercellular CO2 concentration, is shown to be independent of leaf temperature over the ranges measured. The changes in the quantum yields of C3 plants are due to changes in the O2 inhibition. The evolutionary significance of the CO2 dependence of the quantum yield in C3 plants and the ecological significance of the temperature effects on the quantum yields of C3 and C4 plants are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号