首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre‐industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre‐industrial scenario, and decreased towards the two future scenarios with sponge replicates under the ‘business‐as‐usual’ CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future.  相似文献   

2.
Dinoflagellates in the genus Symbiodinium associate with a broad array of metazoan and protistian hosts. Symbiodinium‐based symbioses involving bioeroding sponge hosts have received less attention than those involving popular scleractinian hosts. Certain species of common Cliona harbor high densities of an ecologically restricted group of Symbiodinium, referred to as Clade G. Clade G Symbiodinium are also known to form stable and functionally important associations with Foraminifera and black corals (Antipatharia) Analyses of genetic evidence indicate that Clade G likely comprises several distinct species. Here, we use nucleotide sequence data in combination with ecological and geographic attributes to formally describe Symbiodinium endoclionum sp. nov. obtained from the Pacific boring sponge Cliona orientalis and Symbiodinium spongiolum sp. nov. from the congeneric western Atlantic sponge Cliona varians. These species appear to be part of an adaptive radiation comprising lineages of Clade G specialized to the metazoan phyla Porifera and Cnidaria, which began prior to the separation of the Pacific and Atlantic Oceans.  相似文献   

3.
Although increasing the pCO2 for diatoms will presumably down‐regulate the CO2‐concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 μatm, pH 8.1), carbonated (pCO2 800 μatm, pH 8.1), acidified (pCO2 400 μatm, pH 7.8), and OA (pCO2 800 μatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down‐regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2, than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross‐membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.  相似文献   

4.
5.
Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef‐building corals, Porites cylindrica and Isopora cuneata, to present‐day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2–temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2–temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2–temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.  相似文献   

6.
Future coral reefs are expected to be subject to higher pCO2 and temperature due to anthropogenic greenhouse gas emissions. Such global stressors are often paired with local stressors thereby potentially modifying the response of organisms. Benthic macroalgae are strong competitors to corals and are assumed to do well under future conditions. The present study aimed to assess the impact of past and future CO2 emission scenarios as well as nutrient enrichment on the growth, productivity, pigment, and tissue nutrient content of the common tropical brown alga Chnoospora implexa. Two experiments were conducted to assess the differential impacts of the manipulated conditions in winter and spring. Chnoospora implexa's growth rate averaged over winter and spring declined with increasing pCO2 and temperature. Furthermore, nutrient enrichment did not affect growth. Highest growth was observed under spring pre‐industrial (PI) conditions, while slightly reduced growth was observed under winter A1FI (“business‐as‐usual”) scenarios. Productivity was not a good proxy for growth, as net O2 flux increased under A1FI conditions. Nutrient enrichment, whilst not affecting growth, led to luxury nutrient uptake that was greater in winter than in spring. The findings suggest that in contrast with previous work, C. implexa is not likely to show enhanced growth under future conditions in isolation or in conjunction with nutrient enrichment. Instead, the results suggest that greatest growth rates for this species appear to be a feature of the PI past, with A1FI winter conditions leading to potential decreases in the abundance of this species from present day levels.  相似文献   

7.
The endosymbiotic relationship between cnidarians and Symbiodinium is critical for the survival of coral reefs. In this study, we developed a protocol to rapidly and freshly separate Symbiodinium from corals and sea anemones. Furthermore, we compared these freshly‐isolated Symbiodinium with cultured Symbiodinium to investigate host and Symbiodinium interaction. Clade B Symbiodinium had higher starch content and lower lipid content than those of clades C and D in both freshly isolated and cultured forms. Clade C had the highest lipid content, particularly when associated with corals. Moreover, the coral‐associated Symbiodinium had higher protein content than did cultured and sea anemone‐associated Symbiodinium. Regarding fatty acid composition, cultured Symbiodinium and clades B, C, and D shared similar patterns, whereas sea anemone‐associated Symbiodinium had a distinct pattern compared coral‐associated Symbiodinium. Specifically, the levels of monounsaturated fatty acids were lower than those of the saturated fatty acids, and the level of polyunsaturated fatty acids (PUFAs) were the highest in all examined Symbiodinium. Furthermore, PUFAs levels were higher in coral‐associated Symbiodinium than in cultured Symbiodinium. These results altogether indicated that different Symbiodinium clades used different energy storage strategies, which might be modified by hosts.  相似文献   

8.
Corals at the world's southernmost coral reef of Lord Howe Island (LHI) experience large temperature and light fluctuations and need to deal with periods of cold temperature (<18°C), but few studies have investigated how corals are able to cope with these conditions. Our study characterized the response of key photophysiological parameters, as well as photoacclimatory and photoprotective pigments (chlorophylls, xanthophylls, and β‐carotene), to short‐term (5‐d) cold stress (~15°C; 7°C below control) in three LHI coral species hosting distinct Symbiodinium ITS2 types, and compared the coral–symbiont response to that under elevated temperature (~29°C; 7°C above control). Under cold stress, Stylophora sp. hosting Symbiodinium C118 showed the strongest effects with regard to losses of photochemical performance and symbionts. Pocillopora damicornis hosting Symbiodinium C100/C118 showed less severe bleaching responses to reduced temperature than to elevated temperature, while Porites heronensis hosting Symbiodinium C111* withstood both reduced and elevated temperature. Under cold stress, photoprotection in the form of xanthophyll de‐epoxidation increased in unbleached P. heronensis (by 178%) and bleached Stylophora sp. (by 225%), while under heat stress this parameter increased in unbleached P. heronensis (by 182%) and in bleached P. damicornis (by 286%). The xanthophyll pool size was stable in all species at all temperatures. Our comparative study demonstrates high variability in the bleaching vulnerability of these coral species to low and high thermal extremes and shows that this variability is not solely determined by the ability to activate xanthophyll de‐epoxidation.  相似文献   

9.
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8‐m‐diameter plots were exposed to a range of whole‐ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co‐occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13–29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow‐on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.  相似文献   

10.
Rising atmospheric carbon dioxide (CO2) concentrations may warm northern latitudes up to 8°C by the end of the century. Boreal forests play a large role in the global carbon cycle, and the responses of northern trees to climate change will thus impact the trajectory of future CO2 increases. We grew two North American boreal tree species at a range of future climate conditions to assess how growth and carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana, an evergreen conifer) and tamarack (Larix laricina, a deciduous conifer) were grown under ambient (407 ppm) or elevated CO2 (750 ppm) and either ambient temperatures, a 4°C warming, or an 8°C warming. In both species, the thermal optimum of net photosynthesis (ToptA) increased and maximum photosynthetic rates declined in warm‐grown seedlings, but the strength of these changes varied between species. Photosynthetic capacity (maximum rates of Rubisco carboxylation, Vcmax, and of electron transport, Jmax) was reduced in warm‐grown seedlings, correlating with reductions in leaf N and chlorophyll concentrations. Warming increased the activation energy for Vcmax and Jmax (EaV and EaJ, respectively) and the thermal optimum for Jmax. In both species, the ToptA was positively correlated with both EaV and EaJ, but negatively correlated with the ratio of Jmax/Vcmax. Respiration acclimated to elevated temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10°C increase in leaf temperature). A warming of 4°C increased biomass in tamarack, while warming reduced biomass in spruce. We show that climate change is likely to negatively affect photosynthesis and growth in black spruce more than in tamarack, and that parameters used to model photosynthesis in dynamic global vegetation models (EaV and EaJ) show no response to elevated CO2.  相似文献   

11.
Climate warming is occurring at a rate not experienced by life on Earth for 10 s of millions of years, and it is unknown whether the coral‐dinoflagellate (Symbiodinium spp.) symbiosis can evolve fast enough to ensure coral reef persistence. Coral thermal tolerance is partly dependent on the Symbiodinium hosted. Therefore, directed laboratory evolution in Symbiodinium has been proposed as a strategy to enhance coral holobiont thermal tolerance. Using a reciprocal transplant design, we show that the upper temperature tolerance and temperature tolerance range of Symbiodinium C1 increased after ~80 asexual generations (2.5 years) of laboratory thermal selection. Relative to wild‐type cells, selected cells showed superior photophysiological performance and growth rate at 31°C in vitro, and performed no worse at 27°C; they also had lower levels of extracellular reactive oxygen species (exROS). In contrast, wild‐type cells were unable to photosynthesise or grow at 31°C and produced up to 17 times more exROS. In symbiosis, the increased thermal tolerance acquired ex hospite was less apparent. In recruits of two of three species tested, those harbouring selected cells showed no difference in growth between the 27 and 31°C treatments, and a trend of positive growth at both temperatures. Recruits that were inoculated with wild‐type cells, however, showed a significant difference in growth rates between the 27 and 31°C treatments, with a negative growth trend at 31°C. There were no significant differences in the rate and severity of bleaching in coral recruits harbouring wild‐type or selected cells. Our findings highlight the need for additional Symbiodinium genotypes to be tested with this assisted evolution approach. Deciphering the genetic basis of enhanced thermal tolerance in Symbiodinium and the cause behind its limited transference to the coral holobiont in this genotype of Symbiodinium C1 are important next steps for developing methods that aim to increase coral bleaching tolerance.  相似文献   

12.
Warmer than average summer sea surface temperature is one of the main drivers for coral bleaching, which describes the loss of endosymbiotic dinoflagellates (genus: Symbiodinium) in reef‐building corals. Past research has established that oxidative stress in the symbiont plays an important part in the bleaching cascade. Corals hosting different genotypes of Symbiodinium may have varying thermal bleaching thresholds, but changes in the symbiont's antioxidant system that may accompany these differences have received less attention. This study shows that constitutive activity and up‐regulation of different parts of the antioxidant network under thermal stress differs between four Symbiodinium types in culture and that thermal susceptibility can be linked to glutathione redox homeostasis. In Symbiodinium B1, C1 and E, declining maximum quantum yield of PSII (Fv/Fm) and death at 33°C were generally associated with elevated superoxide dismutase (SOD) activity and a more oxidized glutathione pool. Symbiodinium F1 exhibited no decline in Fv/Fm or growth, but showed proportionally larger increases in ascorbate peroxidase (APX) activity and glutathione content (GSx), while maintaining GSx in a reduced state. Depressed growth in Symbiodinium B1 at a sublethal temperature of 29°C was associated with transiently increased APX activity and glutathione pool size, and an overall increase in glutathione reductase (GR) activity. The collapse of GR activity at 33°C, together with increased SOD, APX and glutathione S‐transferase activity, contributed to a strong oxidation of the glutathione pool with subsequent death. Integrating responses of multiple components of the antioxidant network highlights the importance of antioxidant plasticity in explaining type‐specific temperature responses in Symbiodinium.  相似文献   

13.
Rising global CO2 is changing the carbonate chemistry of seawater, which is expected to influence the way phytoplankton acquire inorganic carbon. All phytoplankton rely on ribulose‐bisphosphate carboxylase oxygenase (RUBISCO) for assimilation of inorganic carbon in photosynthesis, but this enzyme is inefficient at present day CO2 levels. Many algae have developed a range of energy demanding mechanisms, referred to as carbon concentrating mechanisms (CCMs), which increase the efficiency of carbon acquisition. We investigated CCM activity in three southern hemisphere strains of the coccolithophorid Emiliania huxleyi W. W. Hay & H. P. Mohler. Both calcifying and non‐calcifying strains showed strong CCM activity, with HCO3? as a preferred source of photosynthetic carbon in the non‐calcifying strain, but a higher preference for CO2 in the calcifying strains. All three strains were characterized by the presence of pyrenoids, external carbonic anhydrase (CA) and high affinity for CO2 in photosynthesis, indicative of active CCMs. We postulate that under higher CO2 levels cocco‐lithophorids will be able to down‐regulate their CCMs, and re‐direct some of the metabolic energy to processes such as calcification. Due to the expected rise in CO2 levels, photosynthesis in calcifying strains is expected to benefit most, due to their use of CO2 for carbon uptake. The non‐calcifying strain, on the other hand, will experience only a 10% increase in HCO3?, thus making it less responsive to changes in carbonate chemistry of water.  相似文献   

14.
15.
Scleractinian corals have demonstrated the ability to shuffle their endosymbiotic dinoflagellate communities (genus Symbiodinium) during periods of acute environmental stress. This has been proposed as a mechanism of acclimation, which would be increased by a diverse and flexible association with Symbiodinium. Conventional molecular techniques used to evaluate Symbiodinium diversity are unable to identify genetic lineages present at background levels below 10%. Next generation sequencing (NGS) offers a solution to this problem and can resolve microorganism diversity at much finer scales. Here we apply NGS to evaluate Symbiodinium diversity and host specificity in Acropora corals from contrasting regions of Western Australia. The application of 454 pyrosequencing allowed for detection of Symbiodinium operational taxonomic units (OTUs) occurring at frequencies as low as 0.001%, offering a 10 000‐fold increase in sensitivity compared to traditional methods. All coral species from both regions were overwhelmingly dominated by a single clade C OTU (accounting for 98% of all recovered sequences). Only 8.5% of colonies associated with multiple clades (clades C and D, or C and G), suggesting a high level of symbiont specificity in Acropora assemblages in Western Australia. While only 40% of the OTUs were shared between regions, the dominance of a single OTU resulted in no significant difference in Symbiodinium community structure, demonstrating that the coral‐algal symbiosis can remain stable across more than 15° of latitude and a range of sea surface temperature profiles. This study validates the use of NGS platforms as tools for providing fine‐scale estimates of Symbiodinium diversity and can offer critical insight into the flexibility of the coral‐algal symbiosis.  相似文献   

16.
This study tests the ability of five Dynamic Global Vegetation Models (DGVMs), forced with observed climatology and atmospheric CO2, to model the contemporary global carbon cycle. The DGVMs are also coupled to a fast ‘climate analogue model’, based on the Hadley Centre General Circulation Model (GCM), and run into the future for four Special Report Emission Scenarios (SRES): A1FI, A2, B1, B2. Results show that all DGVMs are consistent with the contemporary global land carbon budget. Under the more extreme projections of future environmental change, the responses of the DGVMs diverge markedly. In particular, large uncertainties are associated with the response of tropical vegetation to drought and boreal ecosystems to elevated temperatures and changing soil moisture status. The DGVMs show more divergence in their response to regional changes in climate than to increases in atmospheric CO2 content. All models simulate a release of land carbon in response to climate, when physiological effects of elevated atmospheric CO2 on plant production are not considered, implying a positive terrestrial climate‐carbon cycle feedback. All DGVMs simulate a reduction in global net primary production (NPP) and a decrease in soil residence time in the tropics and extra‐tropics in response to future climate. When both counteracting effects of climate and atmospheric CO2 on ecosystem function are considered, all the DGVMs simulate cumulative net land carbon uptake over the 21st century for the four SRES emission scenarios. However, for the most extreme A1FI emissions scenario, three out of five DGVMs simulate an annual net source of CO2 from the land to the atmosphere in the final decades of the 21st century. For this scenario, cumulative land uptake differs by 494 Pg C among DGVMs over the 21st century. This uncertainty is equivalent to over 50 years of anthropogenic emissions at current levels.  相似文献   

17.
Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process‐based growth model (cenw ) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid‐range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances.  相似文献   

18.
Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH4), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature‐sensitive processes that decompose stored organic carbon and release carbon dioxide (CO2) and CH4. Variation in the temperature sensitivity of CO2 and CH4 production and increased peat aerobicity due to enhanced growing‐season evapotranspiration may alter the nature of peatland trace gas emission. As CH4 is a powerful greenhouse gas with 34 times the warming potential of CO2, it is critical to understand how factors associated with global change will influence surface CO2 and CH4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0–9°C gradient in deep belowground warming (“Deep Peat Heat”, DPH) on peat surface CO2 and CH4 fluxes. We find that DPH treatments increased both CO2 and CH4 emission. Methane production was more sensitive to warming than CO2 production, decreasing the C‐CO2:C‐CH4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ13C of CH4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH4 is <2%, CH4 represents >50% of seasonal C emissions in the highest‐warming treatments when adjusted for CO2 equivalents on a 100‐year timescale. These results suggest that warming in boreal regions may increase CH4 emissions from peatlands and result in a positive feedback to ongoing warming.  相似文献   

19.
Foliar stomatal movements are critical for regulating plant water loss and gas exchange. Elevated carbon dioxide (CO2) levels are known to induce stomatal closure. However, the current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report metabolomic responses of Brassica napus guard cells to elevated CO2 using three hyphenated metabolomics platforms: gas chromatography‐mass spectrometry (MS); liquid chromatography (LC)‐multiple reaction monitoring‐MS; and ultra‐high‐performance LC‐quadrupole time‐of‐flight‐MS. A total of 358 metabolites from guard cells were quantified in a time‐course response to elevated CO2 level. Most metabolites increased under elevated CO2, showing the most significant differences at 10 min. In addition, reactive oxygen species production increased and stomatal aperture decreased with time. Major alterations in flavonoid, organic acid, sugar, fatty acid, phenylpropanoid and amino acid metabolic pathways indicated changes in both primary and specialized metabolic pathways in guard cells. Most interestingly, the jasmonic acid (JA) biosynthesis pathway was significantly altered in the course of elevated CO2 treatment. Together with results obtained from JA biosynthesis and signaling mutants as well as CO2 signaling mutants, we discovered that CO2‐induced stomatal closure is mediated by JA signaling.  相似文献   

20.
Forest performance is challenged by climate change but higher atmospheric [CO2] (ca) could help trees mitigate the negative effect of enhanced water stress. Forest projections using data assimilation with mechanistic models are a valuable tool to assess forest performance. Firstly, we used dendrochronological data from 12 Mediterranean tree species (six conifers and six broadleaves) to calibrate a process‐based vegetation model at 77 sites. Secondly, we conducted simulations of gross primary production (GPP) and radial growth using an ensemble of climate projections for the period 2010–2100 for the high‐emission RCP8.5 and low‐emission RCP2.6 scenarios. GPP and growth projections were simulated using climatic data from the two RCPs combined with (i) expected ca; (ii) constant ca = 390 ppm, to test a purely climate‐driven performance excluding compensation from carbon fertilization. The model accurately mimicked the growth trends since the 1950s when, despite increasing ca, enhanced evaporative demands precluded a global net positive effect on growth. Modeled annual growth and GPP showed similar long‐term trends. Under RCP2.6 (i.e., temperatures below +2 °C with respect to preindustrial values), the forests showed resistance to future climate (as expressed by non‐negative trends in growth and GPP) except for some coniferous sites. Using exponentially growing ca and climate as from RCP8.5, carbon fertilization overrode the negative effect of the highly constraining climatic conditions under that scenario. This effect was particularly evident above 500 ppm (which is already over +2 °C), which seems unrealistic and likely reflects model miss‐performance at high ca above the calibration range. Thus, forest projections under RCP8.5 preventing carbon fertilization displayed very negative forest performance at the regional scale. This suggests that most of western Mediterranean forests would successfully acclimate to the coldest climate change scenario but be vulnerable to a climate warmer than +2 °C unless the trees developed an exaggerated fertilization response to [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号