首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The intermediate filament protein nestin is expressed by neural stem cells, but also by some astrocytes in the neurogenic niche of the hippocampus in the adult rodent brain. We recently reported that nestin-deficient (Nes?/?) mice showed increased adult hippocampal neurogenesis, reduced Notch signaling from Nes?/? astrocytes to the neural stem cells, and impaired long-term memory. Here we assessed learning and memory of Nes?/? mice in a home cage set up using the IntelliCage system, in which the mice learn in which cage corner a nose poke earns access to drinking water. Nes?/? and wildtype mice showed comparable place learning assessed as the incorrect corner visit ratio and the incorrect nose poke ratio. However, during reversal place learning, a more challenging task, Nes?/? mice, compared to wildtype mice, showed improved learning over time demonstrated by the incorrect visit ratio and improved memory extinction over time assessed as nose pokes per visit to the previous drinking corner. In addition, Nes?/? mice showed increased explorative activity as judged by the increased total numbers of corner visits and nose pokes. We conclude that Nes?/? mice exhibit improved reversal place learning and memory extinction, a finding which together with the previous results supports the concept of the dual role of hippocampal neurogenesis in cognitive functions.

  相似文献   

2.
Cellular polarity is crucial for brain development and morphogenesis. Lethal giant larvae 1 (Lgl1) plays a crucial role in the establishment of cell polarity from Drosophila to mammalian cells. Previous studies have found the importance of Lgl1 in the development of cerebellar, olfactory bulb, and cerebral cortex. However, the role of Lgl1 in hippocampal development during the embryonic stage and function in adult mice is still unknown. In our study, we created Lgl1‐deficient hippocampus mice by using Emx1‐Cre mice. Histological analysis showed that the Emx1‐Lgl1?/? mice exhibited reduced size of the hippocampus with severe malformations of hippocampal cytoarchitecture. These defects mainly originated from the disrupted hippocampal neuroepithelium, including increased cell proliferation, abnormal interkinetic nuclear migration, reduced differentiation, increased apoptosis, gradual disruption of adherens junctions, and abnormal neuronal migration. The radial glial scaffold was disorganized in the Lgl1‐deficient hippocampus. Thus, Lgl1 plays a distinct role in hippocampal neurogenesis. In addition, the Emx1‐Lgl1?/? mice displayed impaired behavioral performance in the Morris water maze and fear conditioning test.  相似文献   

3.
4.
The role of the cyclic nucleotide‐gated (CNG) channel CNGA3 is well established in cone photoreceptors and guanylyl cyclase‐D‐expressing olfactory neurons. To assess a potential function of CNGA3 in the mouse amygdala and hippocampus, we examined synaptic plasticity and performed a comparative analysis of spatial learning, fear conditioning and step‐down avoidance in wild‐type mice and CNGA3 null mutants (CNGA3?/?). CNGA3?/? mice showed normal basal synaptic transmission in the amygdala and the hippocampus. However, cornu Ammonis (CA1) hippocampal long‐term potentiation (LTP) induced by a strong tetanus was significantly enhanced in CNGA3?/? mice as compared with their wild‐type littermates. Unlike in the hippocampus, LTP was not significantly altered in the amygdala of CNGA3?/? mice. Enhanced hippocampal LTP did not coincide with changes in hippocampus‐dependent learning, as both wild‐type and mutant mice showed a similar performance in water maze tasks and contextual fear conditioning, except for a trend toward higher step‐down latencies in a passive avoidance task. In contrast, CNGA3?/? mice showed markedly reduced freezing to the conditioned tone in the amygdala‐dependent cued fear conditioning task. In conclusion, our study adds a new entry on the list of physiological functions of the CNGA3 channel. Despite the dissociation between physiological and behavioral parameters, our data describe a so far unrecognized role of CNGA3 in modulation of hippocampal plasticity and amydgala‐dependent fear memory.  相似文献   

5.
Despite enormous progress in the past few years the specific contribution of newly born granule cells to the function of the adult hippocampus is still not clear. We hypothesized that in order to solve this question particular attention has to be paid to the specific design, the analysis, and the interpretation of the learning test to be used. We thus designed a behavioral experiment along hypotheses derived from a computational model predicting that new neurons might be particularly relevant for learning conditions, in which novel aspects arise in familiar situations, thus putting high demands on the qualitative aspects of (re-)learning.In the reference memory version of the water maze task suppression of adult neurogenesis with temozolomide (TMZ) caused a highly specific learning deficit. Mice were tested in the hidden platform version of the Morris water maze (6 trials per day for 5 days with a reversal of the platform location on day 4). Testing was done at 4 weeks after the end of four cycles of treatment to minimize the number of potentially recruitable new neurons at the time of testing. The reduction of neurogenesis did not alter longterm potentiation in CA3 and the dentate gyrus but abolished the part of dentate gyrus LTP that is attributed to the new neurons. TMZ did not have any overt side effects at the time of testing, and both treated mice and controls learned to find the hidden platform. Qualitative analysis of search strategies, however, revealed that treated mice did not advance to spatially precise search strategies, in particular when learning a changed goal position (reversal). New neurons in the dentate gyrus thus seem to be necessary for adding flexibility to some hippocampus-dependent qualitative parameters of learning.Our finding that a lack of adult-generated granule cells specifically results in the animal''s inability to precisely locate a hidden goal is also in accordance with a specialized role of the dentate gyrus in generating a metric rather than just a configurational map of the environment. The discovery of highly specific behavioral deficits as consequence of a suppression of adult hippocampal neurogenesis thus allows to link cellular hippocampal plasticity to well-defined hypotheses from theoretical models.  相似文献   

6.
Induction of phosphorylated extracellular-regulated kinase (pERK) is a reliable molecular readout of learning-dependent neuronal activation. Here, we describe a pERK immunohistochemistry protocol to study the profile of hippocampal neuron activation following exposure to a spatial learning task in a mouse model characterized by cognitive deficits of neurodevelopmental origin. Specifically, we used pERK immunostaining to study neuronal activation following Morris water maze (MWM, a classical hippocampal-dependent learning task) in Engrailed-2 knockout (En2-/-) mice, a model of autism spectrum disorders (ASD). As compared to wild-type (WT) controls, En2-/- mice showed significant spatial learning deficits in the MWM. After MWM, significant differences in the number of pERK-positive neurons were detected in specific hippocampal subfields of En2-/- mice, as compared to WT animals. Thus, our protocol can robustly detect differences in pERK-positive neurons associated to hippocampal-dependent learning impairment in a mouse model of ASD. More generally, our protocol can be applied to investigate the profile of hippocampal neuron activation in both genetic or pharmacological mouse models characterized by cognitive deficits.  相似文献   

7.
Studies in rats that assessed the relation of hippocampus-dependent learning and adult hippocampal neurogenesis suggested a direct regulatory effect of learning on neurogenesis, whereas a similar study in mice had not found such causal link. We here report a substantial decrease of BrdU-positive cells and other measures of adult hippocampal neurogenesis in mice trained in the hidden (HID) or cued version (VIS) of the Morris water maze as compared to untrained animals (CTR). Particularly, cells on advanced stages of neuronal development contributed to this decrease, whereas earlier progenitors (type 2 cells) were not diminished in HID, but were diminished in VIS as compared to CTR. The differential regulation of type 2 cells in HID and VIS may have been caused by a different degree of physical activity, given that a time-yoked control group did not differ from HID, and type 2 cells reportedly constitute the proliferative dentate gyrus population that primarily responds to physical activity. The decrease of hippocampal neurogenesis by water maze training was reversible by pre-exposing animals to the water maze prior to training, suggesting that stress associated with training may have caused the acute downregulation of adult neurogenesis. We propose that in mice the Morris water maze does not provide a pure enough learning stimulus to study the presumed effects of 'learning' on adult neurogenesis. In addition, however, our data show that physical activity that is intricately linked to many cognitive tasks in rodents might play an important role in explaining effects of learning on cellular hippocampal plasticity.  相似文献   

8.
The Kv2.1 delayed rectifier potassium channel exhibits high‐level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity‐dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1?/?) mice lacking this channel. Kv2.1?/? mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1?/? mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1?/? mice appear unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1?/? animals. Field recordings from hippocampal slices of Kv2.1?/? mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1?/? mice, long‐term potentiation at the Schaffer collateral – CA1 synapse is decreased. Kv2.1?/? mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1?/? mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1?/? mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function .  相似文献   

9.
Depression and anxiety involve hippocampal dysfunction, but the specific relationship between these mood disorders and adult hippocampal dentate gyrus neurogenesis remains unclear. In both humans with MDD and rodent models of depression, administration of antidepressants increases DG progenitor and granule cell number, yet rodents with induced ablation of DG neurogenesis typically do not demonstrate depressive- or anxiety-like behaviors. The conflicting data may be explained by the varied duration and degree to which adult neurogenesis is reduced in different rodent neurogenesis ablation models. In order to test this hypothesis we examined how a transient–rather than permanent–inducible reduction in neurogenesis would alter depressive- and anxiety-like behaviors. Transgenic Nestin-CreERT2/floxed diphtheria toxin fragment A (DTA) mice (Cre+DTA+) and littermates (Cre+DTA-; control) were given tamoxifen (TAM) to induce recombination and decrease nestin-expressing stem cells and their progeny. The decreased neurogenesis was transient: 12 days post-TAM Cre+DTA+ mice had fewer DG proliferating Ki67+ cells and fewer DCX+ neuroblasts/immature neurons relative to control, but 30 days post-TAM Cre+DTA+ mice had the same DCX+ cell number as control. This ability of DG neurogenesis to recover after partial ablation also correlated with changes in behavior. Relative to control, Cre+DTA+ mice tested between 12–30 days post-TAM displayed indices of a stress-induced anxiety phenotype–longer latency to consume highly palatable food in the unfamiliar cage in the novelty-induced hypophagia test, and a depression phenotype–longer time of immobility in the tail suspension test, but Cre+DTA+ mice tested after 30 days post-TAM did not. These findings suggest a functional association between adult neurogenesis and stress induced anxiety- and depressive-like behaviors, where induced reduction in DCX+ cells at the time of behavioral testing is coupled with stress-induced anxiety and a depressive phenotype, and recovery of DCX+ cell number corresponds to normalization of these behaviors.  相似文献   

10.
The function of adult neurogenesis in the rodent brain remains unclear. Ablation of adult born neurons has yielded conflicting results about emotional and cognitive impairments. One hypothesis is that adult neurogenesis in the hippocampus enables spatial pattern separation, allowing animals to distinguish between similar stimuli. We investigated whether spatial pattern separation and other putative hippocampal functions of adult neurogenesis were altered in a novel genetic model of neurogenesis ablation in the rat. In rats engineered to express thymidine kinase (TK) from a promoter of the rat glial fibrillary acidic protein (GFAP), ganciclovir treatment reduced new neurons by 98%. GFAP-TK rats showed no significant difference from controls in spatial pattern separation on the radial maze, spatial learning in the water maze, contextual or cued fear conditioning. Meta-analysis of all published studies found no significant effects for ablation of adult neurogenesis on spatial memory, cue conditioning or ethological measures of anxiety. An effect on contextual freezing was significant at a threshold of 5% (P = 0.04), but not at a threshold corrected for multiple testing. The meta-analysis revealed remarkably high levels of heterogeneity among studies of hippocampal function. The source of this heterogeneity remains unclear and poses a challenge for studies of the function of adult neurogenesis.  相似文献   

11.
Deficiency in fragile X mental retardation protein (FMRP) results in fragile X syndrome (FXS), an inherited form of intellectual disability. Despite extensive research, it is unclear how FMRP deficiency contributes to the cognitive deficits in FXS. Fmrp-null mice show reduced adult hippocampal neurogenesis. As Fmrp is also enriched in mature neurons, we investigated the function of Fmrp expression in neural stem and progenitor cells (aNSCs) and its role in adult neurogenesis. Here we show that ablation of Fmrp in aNSCs by inducible gene recombination leads to reduced hippocampal neurogenesis in vitro and in vivo, as well as markedly impairing hippocampus-dependent learning in mice. Conversely, restoration of Fmrp expression specifically in aNSCs rescues these learning deficits in Fmrp-deficient mice. These data suggest that defective adult neurogenesis may contribute to the learning impairment seen in FXS, and these learning deficits can be rectified by delayed restoration of Fmrp specifically in aNSCs.  相似文献   

12.
Brain-derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) are members of the neurotrophin family and are expressed in the developing and adult tongue papillae. BDNF null-mutated mice exhibit specific impairments related to innervation and development of the gustatory system while NT-3 null mice have deficits in their lingual somatosensory innervation. To further evaluate the functional specificity of these neurotrophins in the peripheral gustatory system, we generated double BDNF/NT-3 knockout mice and compared the phenotype to BDNF?/? and wild-type mice. Taste papillae morphology was severely distorted in BDNF?/?xNT-3?/? mice compared to single BDNF?/? and wild-type mice. The deficits were found throughout the tongue and all gustatory papillae. There was a significant loss of fungiform papillae and the papillae were smaller in size compared to BDNF?/? and wild-type mice. Circumvallate papillae in the double knockouts were smaller and did not contain any intraepithelial nerve fibers. BDNF?/?xNT-3?/? mice exhibited additive losses in both somatosensory and gustatory innervation indicating that BDNF and NT-3 exert specific roles in the innervation of the tongue. However, the additional loss of fungiform papillae and taste buds in BDNF?/?xNT-3?/? mice compared to single BDNF knockout mice indicate a synergistic functional role for both BDNF-dependent gustatory and NT-3-dependent somatosensory innervations in taste bud and taste papillae innervation and development.  相似文献   

13.
Tau is a microtubule‐associated neuronal protein found mainly in axons. However, its presence in dendrites and dendritic spines is particularly relevant due to its involvement in synaptic plasticity and neurodegeneration. Here, we show that Tau plays a novel in vivo role in the morphological and synaptic maturation of newborn hippocampal granule neurons under basal conditions. Furthermore, we reveal that Tau is involved in the selective cell death of immature granule neurons caused by acute stress. Also, Tau deficiency protects newborn neurons from the stress‐induced dendritic atrophy and loss of postsynaptic densities (PSDs). Strikingly, we also demonstrate that Tau regulates the increase in newborn neuron survival triggered by environmental enrichment (EE). Moreover, newborn granule neurons from Tau?/? mice did not show any stimulatory effect of EE on dendritic development or on PSD generation. Thus, our data demonstrate that Tau?/? mice show impairments in the maturation of newborn granule neurons under basal conditions and that they are insensitive to the modulation of adult hippocampal neurogenesis exerted by both stimulatory and detrimental stimuli.  相似文献   

14.
Canonical transient receptor potential (TRPC) channels influence various neuronal functions. Using quantitative high‐resolution mass spectrometry, we demonstrate that TRPC1, TRPC4, and TRPC5 assemble into heteromultimers with each other, but not with other TRP family members in the mouse brain and hippocampus. In hippocampal neurons from Trpc1/Trpc4/Trpc5‐triple‐knockout (Trpc1/4/5?/?) mice, lacking any TRPC1‐, TRPC4‐, or TRPC5‐containing channels, action potential‐triggered excitatory postsynaptic currents (EPSCs) were significantly reduced, whereas frequency, amplitude, and kinetics of quantal miniature EPSC signaling remained unchanged. Likewise, evoked postsynaptic responses in hippocampal slice recordings and transient potentiation after tetanic stimulation were decreased. In vivo, Trpc1/4/5?/? mice displayed impaired cross‐frequency coupling in hippocampal networks and deficits in spatial working memory, while spatial reference memory was unaltered. Trpc1/4/5?/? animals also exhibited deficiencies in adapting to a new challenge in a relearning task. Our results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons.  相似文献   

15.
Obsessive‐compulsive disorder (OCD) is characterized by obsessive thinking, compulsive behavior and anxiety, and is often accompanied by cognitive deficits. The neuropathology of OCD involves dysregulation of cortical‐striatal circuits. Similar to OCD patients, SAPAP3 knockout mice 3 (SAPAP3?/?) exhibit compulsive behavior (grooming), anxiety and dysregulated cortical‐striatal function. However, it is unknown whether SAPAP3?/? display cognitive deficits and how these different behavioral traits relate to one another. SAPAP3?/? and wild‐type (WT) littermates were trained in a Pavlovian conditioning task pairing visual cues with the delivery of sucrose solution. After mice learned to discriminate between a reward‐predicting conditioned stimulus (CS+) and a non‐reward stimulus (CS?), contingencies were reversed (CS+ became CS? and vice versa). Additionally, we assessed grooming, anxiety and general activity. SAPAP3?/? acquired Pavlovian approach behavior similarly to WT, albeit less vigorously and with a different strategy. However, unlike WT, SAPAP3?/? were unable to adapt their behavior after contingency reversal, exemplified by a lack of re‐establishing CS+ approach behavior (sign tracking). Surprisingly, such behavioral inflexibility, decreased vigor, compulsive grooming and anxiety were unrelated. This study shows that SAPAP3?/? are capable of Pavlovian learning, but lack flexibility to adapt associated conditioned approach behavior. Thus, SAPAP3?/? not only display compulsive‐like behavior and anxiety, but also cognitive deficits, confirming and extending the validity of SAPAP3?/? as a suitable model for the study of OCD. The observation that compulsive‐like behavior, anxiety and behavioral inflexibility were unrelated suggests a non‐causal relationship between these traits and may be of clinical relevance for the treatment of OCD.  相似文献   

16.
Burghardt NS  Park EH  Hen R  Fenton AA 《Hippocampus》2012,22(9):1795-1808
The hippocampus is involved in segregating memories, an ability that utilizes the neural process of pattern separation and allows for cognitive flexibility. We evaluated a proposed role for adult hippocampal neurogenesis in cognitive flexibility using variants of the active place avoidance task and two independent methods of ablating adult-born neurons, focal X-irradiation of the hippocampus, and genetic ablation of glial fibrillary acidic protein positive neural progenitor cells, in mice. We found that ablation of adult neurogenesis did not impair the ability to learn the initial location of a shock zone. However, when conflict was introduced by switching the location of the shock zone to the opposite side of the room, irradiated and transgenic mice entered the new shock zone location significantly more than their respective controls. This impairment was associated with increased upregulation of the immediate early gene Arc in the dorsal dentate gyrus, suggesting a role for adult neurogenesis in modulating network excitability and/or synaptic plasticity. Additional experiments revealed that irradiated mice were also impaired in learning to avoid a rotating shock zone when it was added to an initially learned stationary shock zone, but were unimpaired in learning the identical simultaneous task variant if it was their initial experience with place avoidance. Impaired avoidance could not be attributed to a deficit in extinction or an inability to learn a new shock zone location in a different environment. Together these results demonstrate that adult neurogenesis contributes to cognitive flexibility when it requires changing a learned response to a stimulus-evoked memory. ? 2012 Wiley Periodicals, Inc.  相似文献   

17.
Aging causes significant declines in adult hippocampal neurogenesis and leads to cognitive disability. Emerging evidence demonstrates that decline in the mitotic checkpoint kinase BubR1 level occurs with natural aging and induces progeroid features in both mice and children with mosaic variegated aneuploidy syndrome. Whether BubR1 contributes to age‐related deficits in hippocampal neurogenesis is yet to be determined. Here we report that BubR1 expression is significantly reduced with natural aging in the mouse brain. Using established progeroid mice expressing low amounts of BubR1, we demonstrate these mice exhibit deficits in neural progenitor proliferation and maturation, leading to reduction in new neuron production. Collectively, our identification of BubR1 as a new and critical factor controlling sequential steps across neurogenesis raises the possibility that BubR1 may be a key mediator regulating aging‐related hippocampal pathology. Targeting BubR1 may represent a novel therapeutic strategy for age‐related cognitive deficits.  相似文献   

18.
Aging and the presence of cerebrovascular disease are associated with increased incidence of Alzheimer's disease. A common feature of aging and cerebrovascular disease is decreased endothelial nitric oxide (NO). We studied the effect of a loss of endothelium derived NO on amyloid precursor protein (APP) related phenotype in late middle aged (LMA) (14–15 month) endothelial nitric oxide synthase deficient (eNOS?/?) mice. APP, β‐site APP cleaving enzyme (BACE) 1, and amyloid beta (Aβ) levels were significantly higher in the brains of LMA eNOS?/? mice as compared with LMA wild‐type controls. APP and Aβ1‐40 were increased in hippocampal tissue of eNOS?/? mice as compared with wild‐type mice. LMA eNOS?/? mice displayed an increased inflammatory phenotype as compared with LMA wild‐type mice. Importantly, LMA eNOS?/? mice performed worse in a radial arm maze test of spatial learning and memory as compared with LMA wild‐type mice. These data suggest that chronic loss of endothelial NO may be an important contributor to both Aβ related pathology and cognitive decline.

  相似文献   


19.
EphA4 receptor (EphA4) tyrosine kinase is an important regulator of central nervous system development and synaptic plasticity in the mature brain, but its relevance to the control of normal behavior remains largely unexplored. This study is the first attempt to obtain a behavioral profile of constitutive homozygous and heterozygous EphA4 knockout mice. A deficit in locomotor habituation in the open field, impairment in spatial recognition in the Y‐maze and reduced probability of spatial spontaneous alternation in the T‐maze were identified in homozygous EphA4?/? mice, while heterozygo us EphA4+/? mice appeared normal on these tests in comparison with wild‐type (WT) controls. The multiple phenotypes observed in EphA4?/? mice might stem from an underlying deficit in habituation learning, reflecting an elementary form of nonassociative learning that is in contrast to Pavlovian associative learning, which appeared unaffected by EphA4 disruption. A deficit in motor coordination on the accelerating rotarod was also demonstrated only in EphA4?/? mice – a finding in keeping with the presence of abnormal gait in EphA4?/? mice – although they were able to improve performance over training. There was no evidence for substantial changes in major neurochemical markers in various brain regions rich in EphA4 as shown by post‐mortem analysis. This excludes the possibility of major neurochemical compensation in the brain of EphA4?/? mice. In summary, we have demonstrated for the first time the behavioral significance of EphA4 disruption, supporting further investigation of EphA4 as a possible target for behavioral interventions where habituation deficits are prominent.  相似文献   

20.
Depression is a serious mental disorder that affects a person’s mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号