首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Sexual differences are often dramatic and widespread across taxa. Their extravagance and ubiquity can be puzzling because the common underlying genome of males and females is expected to impede rather than foster phenotypic divergence. Widespread dimorphism, despite a shared genome, may be more readily explained by considering the multivariate, rather than univariate, framework governing the evolution of sexual dimorphism. In the univariate formulation, differences in genetic variances and a low intersexual genetic correlation () can facilitate the evolution of sexual dimorphism. However, studies that have analysed sex‐specific differences in heritabilities or genetic variances do not always find significant differences. Furthermore, many of the reported estimates of are very high and positive. When monomorphic heritabilities and a high are present together, the evolution of sexual dimorphism on a trait‐by‐trait basis is severely constrained. By contrast, the multivariate formulation has greater generality and more flexibility. Although the number of multivariate sexual dimorphism studies is low, almost all support sex‐specific differences in the G (variance‐covariance) matrix; G matrices can differ with respect to size and/or orientation, affecting the response to selection differently between the sexes. Second, whereas positive values of the univariate quantity only hinder positive changes in sexual dimorphism, positive covariances in the intersexual covariance B matrix can either help or hinder. Similarly, the handful of studies reporting B matrices indicate that it is often asymmetric, so that B can affect the evolution of single traits differently between the sexes. Multivariate approaches typically demonstrate that genetic covariances among traits can strongly constrain trait evolution when compared with univariate approaches. By contrast, in the evolution of sexual dimorphism, a multivariate view potentially reveals more opportunities for sexual dimorphism to evolve by considering the effect sex‐specific selection has on sex‐specific G matrices and an asymmetric B matrix.  相似文献   

2.
Males and females share much of their genome, and as a result, intralocus sexual conflict is generated when selection on a shared trait differs between the sexes. This conflict can be partially or entirely resolved via the evolution of sex‐specific genetic variation that allows each sex to approach, or possibly achieve, its optimum phenotype, thereby generating sexual dimorphism. However, shared genetic variation between the sexes can impose constraints on the independent expression of a shared trait in males and females, hindering the evolution of sexual dimorphism. Here, we examine genetic constraints on the evolution of sexual dimorphism in Drosophila melanogaster cuticular hydrocarbon (CHC) expression. We use the extended G matrix, which includes the between‐sex genetic covariances that constitute the B matrix, to compare genetic constraints on two sets of CHC traits that differ in the extent of their sexual dimorphism. We find significant genetic constraints on the evolution of further dimorphism in the least dimorphic traits, but no such constraints for the most dimorphic traits. We also show that the genetic constraints on the least dimorphic CHCs are asymmetrical between the sexes. Our results suggest that there is evidence both for resolved and ongoing sexual conflict in D. melanogaster CHC profiles.  相似文献   

3.
The independent evolution of males and females is potentially constrained by both sexes inheriting the same alleles from their parents. This genetic constraint can limit the evolvability of complex traits; however, there are few studies of multivariate evolution that incorporate cross‐sex genetic covariances in their predictions. Drosophila wing‐shape has emerged as a model high‐dimensional phenotype; wing‐shape is highly evolvable in contemporary populations, and yet perplexingly stable across phylogenetic timescales. Here, we show that cross‐sex covariances in Drosophila melanogaster, given by the B ‐matrix, may considerably bias wing‐shape evolution. Using random skewers, we show that B would constrain the response to antagonistic selection by 90%, on average, but would double the response to concordant selection. Both cross‐sex within‐trait and cross‐sex cross‐trait covariances determined the predicted response to antagonistic selection, but only cross‐sex within‐trait covariances facilitated the predicted response to concordant selection. Similar patterns were observed in the direction of extant sexual dimorphism in D. melanogaster, and in directions of most and least dimorphic variation across the Drosophila phylogeny. Our results highlight the importance of considering between‐sex genetic covariances when making predictions about evolution on both macro‐ and microevolutionary timescales, and may provide one more explanatory piece in the puzzle of stasis.  相似文献   

4.
Many species exhibit sexual dimorphism in a variety of characters, and the underlying genetic architecture of dimorphism potentially involves sex-specific differences in the additive-genetic variance-covariance matrix (G) of dimorphic traits. We investigated the quantitative-genetic structure of dimorphic traits in the dioecious plant Silene latifolia by estimating G (including within-sex matrices, G(m), G(f), and the between-sex variance-covariance matrix, B), and the phenotypic variance-covariance matrix (P) for seven traits. Flower number was the most sexually dimorphic trait, and was significantly genetically correlated with all traits within each sex. Negative genetic correlations between flower size and number suggested a genetic trade-off in investment, but positive environmental correlations between the same traits resulted in no physical evidence for a trade-off in the phenotype. Between-sex genetic covariances for homologous traits were always greater than 0 but smaller than 1, showing that some, but not all, of the variation in traits is caused by genes or alleles with sex-limited expression. Using common principal-components analysis (CPCA), a maximum-likelihood (ML) estimation approach, and element-by-element comparison to compare matrices, we found that G(m) and G(f) differed significantly in eigenstructure because of dissimilarity in covariances involving leaf traits, suggesting the presence of variation in sex-limited genes with pleiotropic effects and/or linkage between sex-limited loci. The sex-specific structure of G is expected to cause differences in the correlated responses to selection within each sex, promoting the further evolution and maintenance of dimorphism.  相似文献   

5.
Sexual dimorphism is a consequence of both sex‐specific selection and potential constraints imposed by a shared genetic architecture underlying sexually homologous traits. However, genetic architecture is expected to evolve to mitigate these constraints, allowing the sexes to approach their respective optimal mean phenotype. In addition, sex‐specific selection is expected to generate sexual dimorphism of trait covariance structure (e.g., the phenotypic covariance matrix, P ), but previous empirical work has not fully addressed this prediction. We compared patterns of phenotypic divergence, for three traits in seven taxa in the insect genus Phymata (Reduviidae), to ask whether sexual dimorphism in P is common and whether its magnitude relates to the extent of sexual dimorphism in trait means. We found that sexual dimorphism in both mean and covariance structure was pervasive but also that the multivariate distance between sex‐specific means was correlated with sex differences in the leading eigenvector of P , while accounting for uncertainty in phylogenetic relationships. Collectively, our findings suggest that sexual dimorphism in covariance structure may be a common but underappreciated feature of dioecious populations.  相似文献   

6.
The pattern of genetic variances and covariances among characters, summarized in the additive genetic variance‐covariance matrix, G , determines how a population will respond to linear natural selection. However, G itself also evolves in response to selection. In particular, we expect that, over time, G will evolve correspondence with the pattern of multivariate nonlinear natural selection. In this study, we substitute the phenotypic variance‐covariance matrix ( P ) for G to determine if the pattern of multivariate nonlinear selection in a natural population of Anolis cristatellus, an arboreal lizard from Puerto Rico, has influenced the evolution of genetic variances and covariances in this species. Although results varied among our estimates of P and fitness, and among our analytic techniques, we find significant evidence for congruence between nonlinear selection and P , suggesting that natural selection may have influenced the evolution of genetic constraint in this species.  相似文献   

7.
Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. Although individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance–covariance ( G ) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between‐environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between‐population differences. Neither environmental novelty, nor the difference in mean phenotype predicted these differences in G . Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments.  相似文献   

8.
The extent to which sexual dimorphism can evolve within a population depends on an interaction between sexually divergent selection and constraints imposed by a genetic architecture that is shared between males and females. The degree of constraint within a population is normally inferred from the intersexual genetic correlation, r(mf) . However, such bivariate correlations ignore the potential constraining effect of genetic covariances between other sexually coexpressed traits. Using the fruit fly Drosophila serrata, a species that exhibits mutual mate preference for blends of homologous contact pheromones, we tested the impact of between-sex between-trait genetic covariances using an extended version of the genetic variance-covariance matrix, G, that includes Lande's (1980) between-sex covariance matrix, B. We find that including B greatly reduces the degree to which male and female traits are predicted to diverge in the face of divergent phenotypic selection. However, the degree to which B alters the response to selection differs between the sexes. The overall rate of male trait evolution is predicted to decline, but its direction remains relatively unchanged, whereas the opposite is found for females. We emphasize the importance of considering the B-matrix in microevolutionary studies of constraint on the evolution of sexual dimorphism.  相似文献   

9.
Darwin viewed the ornamentation of females as an indirect consequence of sexual selection on males and the transmission of male phenotypes to females via the ‘laws of inheritance’. Although a number of studies have supported this view by demonstrating substantial between‐sex genetic covariance for ornament expression, the majority of this work has focused on avian plumage. Moreover, few studies have considered the genetic basis of ornaments from a multivariate perspective, which may be crucial for understanding the evolution of sex differences in general, and of complex ornaments in particular. Here, we provide a multivariate, quantitative‐genetic analysis of a sexually dimorphic ornament that has figured prominently in studies of sexual selection: the brightly coloured dewlap of Anolis lizards. Using data from a paternal half‐sibling breeding experiment in brown anoles (Anolis sagrei), we show that multiple aspects of dewlap size and colour exhibit significant heritability and a genetic variance–covariance structure ( G ) that is broadly similar in males ( G m) and females ( G f). Whereas sexually monomorphic aspects of the dewlap, such as hue, exhibit significant between‐sex genetic correlations (rmf), sexually dimorphic features, such as area and brightness, exhibit reduced rmf values that do not differ from zero. Using a modified random skewers analysis, we show that the between‐sex genetic variance–covariance matrix ( B) should not strongly constrain the independent responses of males and females to sexually antagonistic selection. Our microevolutionary analysis is in broad agreement with macroevolutionary perspectives indicating considerable scope for the independent evolution of coloration and ornamentation in males and females.  相似文献   

10.
Empirical studies show that lineages typically exhibit long periods of evolutionary stasis and that relative levels of within‐species trait covariance often correlate with the extent of between‐species trait divergence. These observations have been interpreted by some as evidence of genetic constraints persisting for long periods of time. However, an alternative explanation is that both intra‐ and interspecific variation are shaped by the features of the adaptive landscape (e.g., stabilizing selection). Employing a genus of insects that are diverse with respect to a suite of secondary sex traits, we related data describing nonlinear phenotypic (sexual) selection to intraspecific trait covariances and macroevolutionary divergence. We found support for two key predictions (1) that intraspecific trait covariation would be aligned with stabilizing selection and (2) that there would be restricted macroevolutionary divergence in the direction of stabilizing selection. The observed alignment of all three matrices offers a point of caution in interpreting standing variability as metrics of evolutionary constraint. Our results also illustrate the power of sexual selection for determining variation observed at both short and long timescales and account for the apparently slow evolution of some secondary sex characters in this lineage.  相似文献   

11.
12.
Studies of evolutionary divergence using quantitative genetic methods are centered on the additive genetic variance–covariance matrix ( G ) of correlated traits. However, estimating G properly requires large samples and complicated experimental designs. Multivariate tests for neutral evolution commonly replace average G by the pooled phenotypic within‐group variance–covariance matrix ( W ) for evolutionary inferences, but this approach has been criticized due to the lack of exact proportionality between genetic and phenotypic matrices. In this study, we examined the consequence, in terms of type I error rates, of replacing average G by W in a test of neutral evolution that measures the regression slope between among‐population variances and within‐population eigenvalues (the Ackermann and Cheverud [AC] test) using a simulation approach to generate random observations under genetic drift. Our results indicate that the type I error rates for the genetic drift test are acceptable when using W instead of average G when the matrix correlation between the ancestral G and P is higher than 0.6, the average character heritability is above 0.7, and the matrices share principal components. For less‐similar G and P matrices, the type I error rates would still be acceptable if the ratio between the number of generations since divergence and the effective population size (t/Ne) is smaller than 0.01 (large populations that diverged recently). When G is not known in real data, a simulation approach to estimate expected slopes for the AC test under genetic drift is discussed.  相似文献   

13.
The independent evolution of males and females is typically constrained by shared genetic variance. Despite substantial research, we still know little about the evolution of cross‐sex genetic covariance and its standardized measure, the cross‐sex genetic correlation (rMF). In particular, it is unclear if rMF tend to vary with age. We compiled 28 traits for which ontogenetic trends in rMF were documented. Decreases in rMF with age were observed significantly more often than increases and the mean effect size for the relationship between rMF and age was large and negative. This suggests that sexual dimorphism (SD) may typically evolve more readily for phenotypes expressed later in ontogeny and that evolutionary inferences related to the evolution of SD should be limited to the ontogenetic stage at which rMF was estimated. Knowledge about ontogenetic variation in rMF should help improving our understanding of evolutionary patterns related to SD and the resolution of intralocus sexual conflicts.  相似文献   

14.
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex‐biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.  相似文献   

15.
Quantitative genetics has been introduced to evolutionary biologists with the suggestion that microevolution could be directly linked to macroevolutionary patterns using, among other parameters, the additive genetic variance/ covariance matrix (G) which is a statistical representation of genetic constraints to evolution. However, little is known concerning the rate and pattern of evolution of G in nature, and it is uncertain whether the constraining effect of G is important over evolutionary time scales. To address these issues, seven species of field crickets from the genera Gryllus and Teleogryllus were reared in the laboratory, and quantitative genetic parameters for morphological traits were estimated from each of them using a nested full-sibling family design. We used three statistical approaches (T method, Flury hierarchy, and Mantel test) to compare G matrices or genetic correlation matrices in a phylogenetic framework. Results showed that G matrices were generally similar across species, with occasional differences between some species. We suggest that G has evolved at a low rate, a conclusion strengthened by the consideration that part of the observed across-species variation in G can be explained by the effect of a genotype by environment interaction. The observed pattern of G matrix variation between species could not be predicted by either morphological trait values or phylogeny. The constraint hypothesis was tested by comparing the multivariate orientation of the reconstructed ancestral G matrix to the orientation of the across-species divergence matrix (D matrix, based on mean trait values). The D matrix mainly revealed divergence in size and, to a much smaller extent, in a shape component related to the ovipositor length. This pattern of species divergence was found to be predictable from the ancestral G matrix in agreement with the expectation of the constraint hypothesis. Overall, these results suggest that the G matrix seems to have an influence on species divergence, and that macroevolution can be predicted, at least qualitatively, from quantitative genetic theory. Alternative explanations are discussed.  相似文献   

16.
Evolutionary potential for adaptation hinges upon the orientation of genetic variation for traits under selection, captured by the additive genetic variance-covariance matrix (G), as well as the evolutionary stability of G. Yet studies that assess both the stability of G and its alignment with selection are extraordinarily rare. We evaluated the stability of G in three Drosophila melanogaster populations that have adapted to local climatic conditions along a latitudinal cline. We estimated population- and sex-specific G matrices for wing size and three climatic stress-resistance traits that diverge adaptively along the cline. To determine how G affects evolutionary potential within these populations, we used simulations to quantify how well G aligns with the direction of trait divergence along the cline (as a proxy for the direction of local selection) and how genetic covariances between traits and sexes influence this alignment. We found that G was stable across the cline, showing no significant divergence overall, or in sex-specific subcomponents, among populations. G also aligned well with the direction of clinal divergence, with genetic covariances strongly elevating evolutionary potential for adaptation to climatic extremes. These results suggest that genetic covariances between both traits and sexes should significantly boost evolutionary responses to environmental change.  相似文献   

17.
The G‐matrix occupies an important position in evolutionary biology both as a summary of the inheritance of quantitative traits and as an ingredient in predicting how those traits will respond to selection and drift. Consequently, the stability of G has an important bearing on the accuracy of predicted evolutionary trajectories. Furthermore, G should evolve in response to stable features of the adaptive landscape and their trajectories through time. Although the stability and evolution of G might be predicted from knowledge of selection in natural populations, most empirical comparisons of G‐matrices have been made in the absence of such a priori predictions. We present a theoretical argument that within‐sex G‐matrices should be more stable than between‐sex B‐matrices because they are more powerfully exposed to multivariate stabilizing selection. We tested this conjecture by comparing estimates of B‐ and within‐sex G‐matrices among three populations of the garter snake Thamnophis elegans. Matrix comparisons using Flury's hierarchical approach revealed that within‐sex G‐matrices had four principal components in common (full CPC), whereas B‐matrices had only a single principal component in common and eigenvalues that were more variable among populations. These results suggest that within‐sex G is more stable than B , as predicted by our theoretical argument.  相似文献   

18.
Evaluating the genetic architecture of sexual dimorphism can aid our understanding of the extent to which shared genetic control of trait variation versus sex‐specific control impacts the evolutionary dynamics of phenotypic change within each sex. We performed a QTL analysis on Silene latifolia to evaluate the contribution of sex‐specific QTL to phenotypic variation in 46 traits, whether traits involved in trade‐offs had colocalized QTL, and whether the distribution of sex‐specific loci can explain differences between the sexes in their variance/covariance matrices. We used a backcross generation derived from two artificial‐selection lines. We found that sex‐specific QTL explained a significantly greater percent of the variation in sexually dimorphic traits than loci expressed in both sexes. Genetically correlated traits often had colocalized QTL, whose signs were in the expected direction. Lastly, traits with different genetic correlations within the sexes displayed a disproportionately high number of sex‐specific QTL, and more QTL co‐occurred in males than females, suggesting greater trait integration. These results show that sex differences in QTL patterns are congruent with theory on the resolution of sexual conflict and differences based on G ‐matrix results. They also suggest that trade‐offs and trait integration are likely to affect males more than females.  相似文献   

19.
Ongoing evolution of polyandry, and consequent extra‐pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross‐sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra‐pair reproduction and male within‐pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra‐pair reproduction and male liability for within‐pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free‐living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra‐pair reproduction is facilitated by genetic covariance with male within‐pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically.  相似文献   

20.
Abstract Patterns of genetic variation and covariation strongly affect the rate and direction of evolutionary change by limiting the amount and form of genetic variation available to natural selection. We studied evolution of morphological variance-covariance structure among seven populations of house finches (Carpodacus mexicanus) with a known phylogenetic history. We examined the relationship between within- and among-population covariance structure and, in particular, tested the concordance between hierarchical changes in morphological variance-covariance structure and phylogenetic history of this species. We found that among-population morphological divergence in either males or females did not follow the within-population covariance patterns. Hierarchical patterns of similarity in morphological covariance matrices were not congruent with a priori defined historical pattern of population divergence. Both of these results point to the lack of proportionality in morphological covariance structure of finch populations, suggesting that random drift alone is unlikely to account for observed divergence. Furthermore, drift alone cannot explain the sex differences in within- and among-population covariance patterns or sex-specific patterns of evolution of covariance structure. Our results suggest that extensive among-population variation in sexual dimorphism in morphological covariance structure was produced by population differences in local selection pressures acting on each sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号