首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Aim Predicting and preventing invasions depends on knowledge of the factors that make ecosystems susceptible to invasion. Current studies generally rely on non‐native species richness (NNSR) as the sole measure of ecosystem invasibility; however, species identity is a critical consideration, given that different ecosystems may have environmental characteristics suitable to different species. Our aim was to examine whether non‐native freshwater fish community composition was related to ecosystem characteristics at the landscape scale. Location United States. Methods We described spatial patterns in non‐native freshwater fish communities among watersheds in the Mid‐Atlantic region of the United States based on records of establishment in the U.S. Geological Survey’s Nonindigenous Aquatic Species Database. We described general relationships between non‐native species and ecosystem characteristics using canonical correspondence analysis. We clustered watersheds by non‐native fish community and described differences among clusters using indicator species analysis. We then assessed whether non‐native communities could be predicted from ecosystem characteristics using random forest analysis and predicted non‐native communities for uninvaded watersheds. We estimated which ecosystem characteristics were most important for predicting non‐native communities using conditional inference trees. Results We identified four non‐native fish communities, each with distinct indicator species. Non‐native communities were predicted based on ecosystem characteristics with an accuracy of 80.6%, with temperature as the most important variable. Relatively uninvaded watersheds were predicted to be invasible by the most diverse non‐native community. Main conclusions Non‐native species identity is an important consideration when assessing ecosystem invasibility. NNSR alone is an insufficient measure of invasibility because ecosystems with equal NNSR may not be equally invasible by the same species. Our findings can help improve predictions of future invasions and focus management and policy decisions on particular species in highly invasible ecosystems.  相似文献   

2.
1. Dispersal and host detection are behaviours promoting the spread of invading populations in a landscape matrix. In fragmented landscapes, the spatial arrangement of habitat structure affects the dispersal success of organisms. 2. The aim of the present study was to determine the long distance dispersal capabilities of two non‐native pine bark beetles (Hylurgus ligniperda and Hylastes ater) in a modified and fragmented landscape with non‐native pine trees. The role of pine density in relation to the abundance of dispersing beetles was also investigated. 3. This study took place in the Southern Alps, New Zealand. A network of insect panel traps was installed in remote valleys at known distances from pine resources (plantations or windbreaks). Beetle abundance was compared with spatially weighted estimates of nearby pine plantations and pine windbreaks. 4. Both beetles were found ≥25 km from the nearest host patch, indicating strong dispersal and host detection capabilities. Small pine patches appear to serve as stepping stones, promoting spread through the landscape. Hylurgus ligniperda (F.) abundance had a strong inverse association with pine plantations and windbreaks, whereas H. ater abundance was not correlated with distance to pine plantations but positively correlated with distance to pine windbreaks, probably reflecting differences in biology and niche preferences. Host availability and dispersed beetle abundance are the proposed limiting factors impeding the spread of these beetles. 5. These mechanistic insights into the spread and persistence of H. ater and H. ligniperda in a fragmented landscape provide ecologists and land managers with a better understanding of factors leading to successful invasion events, particularly in relation to the importance of long‐distance dispersal ability and the distribution and size of host patches.  相似文献   

3.
4.
Soil pathogens are believed to be major contributors to negative plant–soil feedbacks that regulate plant community dynamics and plant invasions. While the theoretical basis for pathogen regulation of plant communities is well established within the plant–soil feedback framework, direct experimental evidence for pathogen community responses to plants has been limited, often relying largely on indirect evidence based on above‐ground plant responses. As a result, specific soil pathogen responses accompanying above‐ground plant community dynamics are largely unknown. Here, we examine the oomycete pathogens in soils conditioned by established populations of native noninvasive and non‐native invasive haplotypes of Phragmites australis (European common reed). Our aim was to assess whether populations of invasive plants harbor unique communities of pathogens that differ from those associated with noninvasive populations and whether the distribution of taxa within these communities may help to explain invasive success. We compared the composition and abundance of pathogenic and saprobic oomycete species over a 2‐year period. Despite a diversity of oomycete taxa detected in soils from both native and non‐native populations, pathogen communities from both invaded and noninvaded soils were dominated by species of Pythium. Pathogen species that contributed the most to the differences observed between invaded and noninvaded soils were distributed between invaded and noninvaded soils. However, the specific taxa in invaded soils responsible for community differences were distinct from those in noninvaded soils that contributed to community differences. Our results indicate that, despite the phylogenetic relatedness of native and non‐native P. australis haplotypes, pathogen communities associated with the dominant non‐native haplotype are distinct from those of the rare native haplotype. Pathogen taxa that dominate either noninvaded or invaded soils suggest different potential mechanisms of invasion facilitation. These findings are consistent with the hypothesis that non‐native plant species that dominate landscapes may “cultivate” a different soil pathogen community to their rhizosphere than those of rarer native species.  相似文献   

5.
6.
7.

Aim

Shifts in diet composition, abundance or distribution of native predators can occur as a result of exotic prey introductions. We examined effects of non‐native earthworms and anthropogenic landscape disturbance on habitat selection by the American robin (Turdus migratorius), a generalist predator, at landscape and local levels. We also investigated whether robins could act as vectors of spread for earthworm cocoons (egg cases).

Location

Boreal forest of Alberta, Canada.

Methods

We conducted robin and earthworm surveys at campgrounds, well pads, roads, pipelines, seismic lines and forest interiors across northern Alberta. At a subset of paired locations that had similar habitats and anthropogenic disturbance levels, we sampled both robins and earthworms.

Results

Both groups were most likely to occur at campgrounds, well pads and roads. Furthermore, robins were more likely to occur at locations where earthworms were present in our paired local‐level surveys. This correlation between robin and earthworm distributions could be due to robins acting as a vector for earthworm spread, rather than robins’ use of earthworms as prey. However, in tests using captive robins, earthworm cocoons did not survive digestion.

Main conclusions

Robin and earthworm distributions were correlated, likely due to robins’ use of earthworms as prey. These results suggest exotic prey can strongly influence native predators at both landscape and local levels, with shifts in native predator distributions occurring as a result of spatial variability in exotic prey distributions. Although the impacts of ecosystem engineering by earthworms have been previously demonstrated, our study provides evidence that effects of earthworms can also cascade upwards via trophic interactions.  相似文献   

8.
Aim The introduction of non‐native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non‐native salmonids on the occupancy of two native amphibians, the long‐toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments. Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA. Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence. Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large‐catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale. Main conclusions Our results suggest that the negative effects of non‐native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non‐native fish and A. macrodactylum at higher elevations in the northern Rocky Mountains may lead to extinction in catchments with limited suitable habitat.  相似文献   

9.
10.
Phenology is a harbinger of climate change, with many species advancing flowering in response to rising temperatures. However, there is tremendous variation among species in phenological response to warming, and any phenological differences between native and non‐native species may influence invasion outcomes under global warming. We simulated global warming in the field and found that non‐native species flowered earlier and were more phenologically plastic to temperature than natives, which did not accelerate flowering in response to warming. Non‐native species' flowering also became more synchronous with other community members under warming. Earlier flowering was associated with greater geographic spread of non‐native species, implicating phenology as a potential trait associated with the successful establishment of non‐native species across large geographic regions. Such phenological differences in both timing and plasticity between native and non‐natives are hypothesised to promote invasion success and population persistence, potentially benefiting non‐native over native species under climate change.  相似文献   

11.
12.
13.
The abundance–impact curve is helpful for understanding and managing the impacts of non‐native species. Abundance–impact curves can have a wide range of shapes (e.g., linear, threshold, sigmoid), each with its own implications for scientific understanding and management. Sometimes, the abundance–impact curve has been viewed as a property of the species, with a single curve for a species. I argue that the abundance–impact curve is determined jointly by a non‐native species and the ecosystem it invades, so that a species may have multiple abundance–impact curves. Models of the impacts of the invasive mussel Dreissena show how a single species can have multiple, noninterchangeable abundance–impact curves. To the extent that ecosystem characteristics determine the abundance–impact curve, abundance–impact curves based on horizontal designs (space‐for‐time substitution) may be misleading and should be used with great caution, it at all. It is important for scientists and managers to correctly specify the abundance–impact curve when considering the impacts of non‐native species. Diverting attention from the invading species to the invaded ecosystem, and especially to the interaction between species and ecosystem, could improve our understanding of how non‐native species affect ecosystems and reduce uncertainty around the effects of management of populations of non‐native species.  相似文献   

14.
15.
16.
17.
Ecologists have recently devoted their attention to the study of species traits and their role in the establishment and spread of nonindigenous species (NIS). However, research efforts have mostly focused on studies of terrestrial taxa, with lesser attention being dedicated to aquatic species. Aquatic habitats comprise of interconnected waterways, as well as exclusive introduction vectors that allow unparalleled artificial transport of species and their propagules. Consequently, species traits that commonly facilitate biological invasions in terrestrial systems may not be as represented in aquatic environments. We provide a global meta‐analysis of studies conducted in both marine and freshwater habitats. We selected studies that conducted experiments with native and NIS under common environmental conditions to allow detailed comparisons among species traits. In addition, we explored whether different factors such as species relatedness, functional feeding groups, latitude, climate, and experimental conditions could be linked to predictive traits. Our results show that species with traits that enhance consumption and growth have a substantially increased probability of establishing and spreading when entering novel ecosystems. Moreover, traits associated with predatory avoidance were more prevalent in NIS and therefore favour invasive species in aquatic habitats. When we analysed NIS interacting with taxonomically distinctive native taxa, we found that consumption and growth were particularly important traits. This suggests that particular attention should be paid to newly introduced species for which there are no close relatives in the local biota. Finally, we found a bias towards studies conducted in temperate regions, and thus, more studies in other climatic regions are needed. We conclude that studies aiming at predicting future range shifts should consider trophic traits of aquatic NIS as these traits are indicative of multiple interacting mechanisms involved in promoting species invasions.  相似文献   

18.
Varying environments can result in different patterns of adaptive phenotypes. By performing a common greenhouse experiment, we identified phenotypic differentiation on phenology, leaf morphology, branch architecture, size, and reproduction, among native, invasive, and landrace ranges of Brassica tournefortii. We first compared trait means and fitness functions among ranges, then we analyzed how trait means and selection strength of populations respond to varying aridity. Most traits varied such that landrace > invasive > native. Excluding reproduction, which was positively selected, most trait PCs experienced nonlinear selection in the native range but frequently shifted to directional selection in invasive and/or landrace ranges. The absence of strong clines for trait means in landrace and invasive populations suggest that agricultural practices and novel environments in source locations affected adaptive potential. Selection strength on faster reproductive phenology (negative directional) and leaf margin trait (disruptive) PCs coincided with increasing moisture. In native populations, higher aridity was associated with more days to reproduction, but landrace and invasive populations show stable mean time to reproduction with increasing moisture. A stable adaptive trait can increase range expansion in the invasive range, but stability can be beneficial for future harvest of B. tournefortii seed crops in the face of climate change.  相似文献   

19.
20.
Pilar Castro‐Díez  Ana Sofia Vaz  Joaquim S. Silva  Marcela van Loo   lvaro Alonso  Cristina Aponte   lvaro Bayn  Peter J. Bellingham  Mariana C. Chiuffo  Nicole DiManno  Kahua Julian  Susanne Kandert  Nicola La Porta  Hlia Marchante  Hamish G. Maule  Margaret M. Mayfield  Daniel Metcalfe  M. Cristina Monteverdi  Martín A. Núez  Rebecca Ostertag  Ingrid M. Parker  Duane A. Peltzer  Luke J. Potgieter  Maia Raymundo  Donald Rayome  Orna Reisman‐Berman  David M. Richardson  Ruben E. Roos  Asuncin Saldaa  Ross T. Shackleton  Agostina Torres  Melinda Trudgen  Josef Urban  Joana R. Vicente  Montserrat Vil  Tiina Ylioja  Rafael D. Zenni  Oscar Godoy 《Biological reviews of the Cambridge Philosophical Society》2019,94(4):1477-1501
Non‐native tree (NNT) species have been transported worldwide to create or enhance services that are fundamental for human well‐being, such as timber provision, erosion control or ornamental value; yet NNTs can also produce undesired effects, such as fire proneness or pollen allergenicity. Despite the variety of effects that NNTs have on multiple ecosystem services, a global quantitative assessment of their costs and benefits is still lacking. Such information is critical for decision‐making, management and sustainable exploitation of NNTs. We present here a global assessment of NNT effects on the three main categories of ecosystem services, including regulating (RES), provisioning (PES) and cultural services (CES), and on an ecosystem disservice (EDS), i.e. pollen allergenicity. By searching the scientific literature, country forestry reports, and social media, we compiled a global data set of 1683 case studies from over 125 NNT species, covering 44 countries, all continents but Antarctica, and seven biomes. Using different meta‐analysis techniques, we found that, while NNTs increase most RES (e.g. climate regulation, soil erosion control, fertility and formation), they decrease PES (e.g. NNTs contribute less than native trees to global timber provision). Also, they have different effects on CES (e.g. increase aesthetic values but decrease scientific interest), and no effect on the EDS considered. NNT effects on each ecosystem (dis)service showed a strong context dependency, varying across NNT types, biomes and socio‐economic conditions. For instance, some RES are increased more by NNTs able to fix atmospheric nitrogen, and when the ecosystem is located in low‐latitude biomes; some CES are increased more by NNTs in less‐wealthy countries or in countries with higher gross domestic products. The effects of NNTs on several ecosystem (dis)services exhibited some synergies (e.g. among soil fertility, soil formation and climate regulation or between aesthetic values and pollen allergenicity), but also trade‐offs (e.g. between fire regulation and soil erosion control). Our analyses provide a quantitative understanding of the complex synergies, trade‐offs and context dependencies involved for the effects of NNTs that is essential for attaining a sustained provision of ecosystem services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号