首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cody J. Dey  James S. Quinn 《Ibis》2017,159(4):725-733
Intra‐brood competition can influence a variety of fitness‐related traits in birds. Previous research on the joint‐nesting Pūkeko Porphyrio melanotus melanotus, a New Zealand subspecies of Australasian Swamphen, showed that chicks that hatched earlier in a brood tended to grow faster, were more likely to survive and had higher dominance status as adults than later hatched nest‐mates. However, this finding could be due to changes in offspring sex ratio across hatch order (e.g. if males tend to hatch earlier), which was not previously examined because of methodological challenges associated with sexing nestling Pūkeko. Here, we report a useful PCR‐based genetic marker to determine the sex of Pūkeko. We then used new sex‐specific data to re‐examine patterns of offspring growth, survival and dominance. We found that the sex of offspring does not account for the hatching‐order patterns related to social dominance, growth or survival. Furthermore, changes in offspring sex ratio across hatching‐order were negligible and offspring sex ratios did not differ significantly between the primary female and secondary female broods (in joint‐clutch nests), or when comparing primary female and single female broods. We found no clear evidence for sex ratio bias according to hatching‐order and conclude that hatching‐order and not offspring sex explain patterns of growth, survivorship and adult dominance in Pūkeko.  相似文献   

2.
The differential environmental sensitivity of the sexes hasstrong implications in the evolutionary history of species asit can alter sexual size dimorphism, population sex ratios,and the faculty of parents to manipulate offspring sex in relationto environmental conditions. We studied sexual differences inhatching patterns and evaluated sex- and size-related mortalityin relation to hatching order and brood sex ratios in the chinstrappenguin Pygoscelis antarctica, a moderately size-dimorphic species,with a modal clutch size of 2 eggs. We found that male, second-hatched,and large eggs showed shorter hatching periods than female,first-hatched, and small eggs. We also found a male-biased mortalityof nestlings in the colony. However, male mortality patternsdiffered depending on the brood sex ratio composition. Mortalityof male chicks in all-male broods was higher than in mixed broodsand higher than female mortality in all-female broods. Contrary,females from mixed brood showed higher mortality than theirmale nest mates and higher too than females in all-female broods.Second-hatched chicks also suffered from higher mortality thanfirst-hatched chicks. Our results indicate that both the superiorcompetitive capacity and the higher energy demand of the largersex constitute 2 causal factors explaining patterns of sex-biasedmortality. Both factors occur in the same species and in differentsituations of sibling competition shaped by brood sex ratiocomposition. This study constitutes a good example of how patternsof sex-related mortality can vary depending on nest environmentalcircumstances. Furthermore, our study suggests that hatchingperiod can be a mechanism underlying sexual differences in theembryonic period of birds.  相似文献   

3.
Success in competition for limiting parental resources depends on the interplay between parental decisions over allocation of care and offspring traits. Birth order, individual sex and sex of competing siblings are major candidates as determinants of success in sib-sib competition, but experimental studies focusing on the combined effect of these factors on parent-offspring communication and within-brood competitive dynamics are rare. Here, we assessed individual food intake and body mass gain during feeding trials in barn swallow chicks differing for seniority and sex, and compared the intensity of their acoustic and postural solicitation (begging) displays. Begging intensity and success in competition depended on seniority in combination with individual sex and sex of the opponent. Junior chicks begged more than seniors, independently of satiation level (which was also experimentally manipulated), and obtained greater access to food. Females were generally weaker competitors than males. Individual sex and sex of the opponent also affected duration of begging bouts. Present results thus show that competition with siblings can make the rearing environment variably harsh for developing chicks, depending on individual sex, sex of competing broodmates and age ranking within the nest. They also suggest that parental decisions on the allocation of care and response of kin to signalling siblings may further contribute to the outcome of sibling competition.  相似文献   

4.
Predator‐induced plasticity has been in the focus of evolutionary ecological research in the last decades, but the consequences of temporal variation in the presence of cues predicting offspring environment have remained controversial. This is partly due to the fact that the role of early environmental effects has scarcely been scrutinized in this context while also controlling for potential maternal effects. In this study, we investigated how past environmental conditions, that is different combinations of risky or safe adult (prenatal) and oviposition (early post‐natal) environments, affected offspring's plastic responses in hatching time and locomotor activity to predation risk during development in the smooth newt (Lissotriton vulgaris). We found that females did not adjust their reproductive investment to the perceived level of risk in the adult environment, and this prenatal environment had generally negligible effect on offspring phenotype. However, when predator cues were absent during oviposition, larvae raised in the presence of predator cues delayed their hatching and exhibited a decreased activity compared to control larvae developing without predator cues, which responses are advantageous when predators pose a threat to hatched larvae. In the presence of predator cues during oviposition, the difference in hatching time persisted, but the difference in general locomotor activity disappeared between risk‐exposed and control larvae. Our findings provide clear experimental evidence that fine‐scale temporal variation in a predictive cue during and after egg‐laying interactively affects offspring phenotype, and highlight the importance of the early post‐natal environment, which may exert a substantial influence on progeny's phenotype also under natural conditions.  相似文献   

5.
Third-hatched nestling in broods of the laughing kookaburra(Dacelo novaeguineae) are often killed by aggressive attacksfrom their older siblings within days of hatching. By installingsurveillance cameras inside nest hollows, we examined nestlingaggression over the "siblicidal" period, in particular to identifywhether parental behavior and competitive disparities betweennestlings affected aggression, and hence the likelihood ofsiblicide. Aggression decreased as nestlings aged and dominancehierarchies became established. The first-hatched nestling was the most aggressive. Fighting between the first-hatched nestlingand its closest rival (second-hatched nestling) increased whenthe hatch interval between them was short, when the size differencebetween them at hatching was small, and when the second nestlingwas female. Female nestlings are faster-growing than males,so young sisters may be an incipient threat requiring preemptiveaction by older siblings. When the second-hatched nestlingwas female, the first-hatched also attacked the third-hatched nestling more frequently. Thus the third-hatched nestling seemsto experience some of the "overflow" of aggression occurringbetween its two older siblings. Nestlings in siblicidal broodswere not fed less compared to nonsiblicidal broods; this isunsurprising because siblicide occurs when feeding rates arecomparatively low. However, siblicidal nestlings were broodedless, and in shorter bouts, which allowed them more time tofight.  相似文献   

6.
Robert A. Aldredge 《Ibis》2016,158(1):16-27
For many animals, adult size is an important determinant of fitness. Thus, after a period of food restriction, offspring often grow quickly to approach an optimal size. Offspring can approach an optimal size by increasing mass faster than the peak growth of offspring that do not delay development (compensatory growth) or by extending the period of rapid growth to reach an optimal size (catch‐up growth). Unfortunately, the most common statistical techniques make it difficult to differentiate alternative growth patterns among developing offspring. Here, I show how random effect estimates can be used to uncover important variation in growth in a short‐lived passerine, the House Sparrow Passer domesticus. Specifically, I show that much of the variation in offspring growth can be explained by differences in the timing of peak growth and in final adult size, both within a single population and within treatments of an experimental manipulation. These results suggest that much of the variation in offspring growth may be explained by factors other than growth rate. I also show that offspring that delay development either maintain slow but steady growth across development and reach a small adult size, or extend the period of rapid growth to reach an optimal size, indicative of catch‐up growth. This pattern of extending the period of rapid growth may allow offspring to minimize the cellular damage caused by compensatory growth but still maximize size‐related fitness benefits (e.g. increased survival and fecundity) prior to fledging.  相似文献   

7.
1. In many noncooperative vertebrates, maternal effects commonly influence offspring survival and development. In cooperative vertebrates, where multiple adults help to raise young from a single brood, social effects may reduce or replace maternal effects on offspring. 2. Factors affecting offspring survival and development at different stages (fledging, nutritional independence and adulthood) were tested in the cooperatively breeding Arabian babbler to determine the relative importance of social, maternal and environmental factors at each stage. An influence of maternal effects was found during the nestling stage only. 3. Social factors affected the survival and development of young at all stages. The amount of food received from helpers influenced post-fledging weight gain, development of foraging skills, and survival to reproductive age. Environmental effects were also important, with groups occupying high-quality territories more likely to produce young that survived to maturity. 4. The strong influence of helper contributions on the survival and development of young at all stages from hatching to maturity suggests social factors may have important long-term effects on offspring fitness in cooperative societies. Traditional measures of offspring survival in cooperative birds, which commonly measure survival to fledging age only, may underestimate the significant benefit of helper contributions on the survival and development of young.  相似文献   

8.
The way in which breeders respond to helping, in terms of either offspring production or their own survival, may reflect the adaptive aspects of a cooperative breeding system. We explore this issue using a 5‐year study of the Ground Tit Pseudopodoces humilis, a facultative cooperative breeder in which 47% of socially monogamous pairs have between one and four close male relatives as helpers. We found that helped nests did not fledge more or heavier nestlings than unhelped nests, and male young from helped and unhelped nests were equally likely to recruit into the local breeding population. However, helped parents of both sexes had a higher probability of survival to the following year than did unhelped parents. These findings suggest that Ground Tit parents with helpers trade current reproduction for personal survival and future reproduction, a strategy favoured by selection to cope with harsh, unpredictable environments such as the Tibetan Plateau.  相似文献   

9.
Evolutionary biologists typically assume that the number of eggs fertilized or developing embryos produced is correlated with an individual's fitness. Using microsatellite markers, we document for the first time estimates of realized fitness quantified as the number of offspring surviving to adulthood in an insect under field conditions. In a territorial damselfly whose males defend tree hole oviposition sites, patterns of offspring survivorship could not be anticipated by adults. Fewer than half of the parents contributing eggs to a larval habitat realized any reproductive success from their investment. The best fitness correlate was the span over which eggs in a clutch hatched. Among parents, female fecundity and male fertilization success were poor predictors of realized fitness. Although body size was correlated with female clutch size and male mating success, larger parents did not realize greater fitness than smaller ones. The uncoupling of traditional fitness surrogates from realized fitness provides strong empirical evidence that selection at the larval stage constrains selection on mated adults.  相似文献   

10.
Ryan TJ  Plague GR 《Oecologia》2004,140(1):46-51
The mole salamander, Ambystoma talpoideum, exhibits both aquatic (gilled) and terrestrial (metamorphosed) adult morphologies. Previous studies have shown the existence of body-size advantages associated with the terrestrial morph in A. talpoideum and other polymorphic salamanders (e.g., A. tigrinum). However, aquatic adult A. talpoideum mature at a younger age and often breed earlier than terrestrial adults. We tested the hypothesis that early maturation and reproduction in aquatic adults increase fitness (irrespective of body size). We reared larval A. talpoideum in mesocosms and varied the timing of hatching, with early-hatching larvae representing the offspring from early-breeding aquatic adults, and late-hatching larvae representing the offspring of later-breeding terrestrial adults. Our results demonstrate significantly higher survival rates among early-hatchlings relative to late-hatching conspecifics, supporting the hypothesis that early reproduction may be an important mechanism mediating the polymorphism in A. talpoideum. We discuss our results within the context of size-based models of the fitness of alternative life-cycles.  相似文献   

11.
1. In many animals immunity is not fully developed until adulthood but the young still need protection against various sets of pathogens. Thus, bird nestlings are highly dependent on antibodies received from their mother (in the eggs) during their rapid early growth period. The relationship between maternal immunity and the development of neonates' own immunity has been poorly studied. 2. It has been suggested that immune function plays an important part in mediating resource competition between different life-history traits, e.g. growth and reproduction. Maternal investment of antibodies has potentially permanent effects on offspring phenotype. Thus, the trade-offs between the immune function and other important life-history traits in the offspring will also affect the fitness of the mother. 3. Our supplemental feeding experiment in the magpie Pica pica indicates that the immunoglobulin levels of offspring at hatching are dependent on a mother's nutritional condition. In addition, the amount of maternal immunoglobulins transferred to offspring increases along the laying order within a nest. 4. We also found that at the age of 8-10 days the immunoglobulin production of the offspring has already begun. Furthermore, the maternal immunoglobulin levels of the offspring at hatching were positively related to their immunoglobulin levels on day 10. 5. Maternal immunoglobulins did not significantly affect offspring growth, but there was a negative relationship between self-produced immunoglobulins and growth over the first 10 days, indicating a trade-off between these traits. Nestlings' weight, however, had a positive relationship with immunoglobulin production suggesting that the observed trade-off between growth and immunoglobulin production is due to catch-up growth of nestlings with a low hatching weight. We found that within nests nestlings with higher maternal antibody levels had higher survival rate until day 20, but between nests there was an opposite relationship. 6. Evidently, there is a trade-off, in magpies, between maternal resources, immune function and growth, shaping the evolution of maternal investment in offspring immunity.  相似文献   

12.
Maternal effects on offspring phenotypes occur because mothers in many species provide an environment for their developing young. Although these factors are correctly "environmental" with respect to the offspring genome, their variance may have both a genetic and an environmental basis in the maternal generation. Here, reciprocal crosses between C57BL/6J and 10 LGXSM recombinant inbred (RI) strains were performed, and litters were divided at weaning into high-fat and low-fat dietary treatments. Differences between reciprocal litters were used to measure genetic maternal effects on offspring phenotypes. Nearly all traits, including weekly body weights and adult blood serum traits, show effects indicative of genetic variation in maternal effects across RI strains, allowing the quantitative trait loci involved to be mapped. Although much of the literature on maternal effects relates to early life traits, we detect strong and significant maternal effects on traits measured at adulthood (as much as 10% of the trait variance at 17 or more weeks after weaning). We also found an interaction affecting adult phenotype between the effects of maternal care between RI strain mothers and C57BL/6J mothers and a later environmental factor (dietary fat intake) for some age-specific weights.  相似文献   

13.
Theory suggests that intraspecific competition associated with direct competition between inbred and outbred individuals should be an important determinant of the severity of inbreeding depression. The reason is that, if outbred individuals are stronger competitors than inbred ones, direct competition should have a disproportionate effect on the fitness of inbred individuals. However, an individual's competitive ability is not only determined by its inbreeding status but also by competitive asymmetries that are independent of an individual's inbreeding status. When this is the case, such competitive asymmetries may shape the outcome of direct competition between inbred and outbred individuals. Here, we investigate the interface between age‐based competitive asymmetries within broods and direct competition between inbred and outbred offspring in the burying beetle Nicrophorus vespilloides. We found that inbred offspring had lower survival than outbred ones confirming that there was inbreeding depression. Furthermore, seniors (older larvae) grew to a larger size and had higher survival than juniors (younger larvae), confirming that there were age‐based competitive asymmetries. Nevertheless, there was no evidence that direct competition between inbred and outbred larvae exacerbated inbreeding depression, no evidence that inbreeding depression was more severe in juniors and no evidence that inbred juniors suffered disproportionately due to competition from outbred seniors. Our results suggest that direct competition between inbred and outbred individuals does not necessarily exacerbate inbreeding depression and that inbred individuals are not always more sensitive to poor and stressful conditions than outbred ones.  相似文献   

14.
Among most species of birds, survival from hatching throughout the first year of life is generally lower than subsequent survival rates. Survival of young birds during their first year may depend on a combination of selection, learning, unpredictable resources, and environmental events (i.e., post‐fledging factors). However, knowledge about post‐fledging development in long‐lived species is usually limited due to a lengthy immature stage when individuals are generally unobservable. Therefore, pre‐fledging characteristics are often used to predict the survival of young birds. We assessed effects of nestling growth rates, hatching date, hatching asynchrony, brood size and rank order after brood reduction, and sex on first‐year survival of 137 fledglings using a mark‐resighting analysis. We found that the survival probability (Φ1yr = 0.39) of first‐year Herring Gulls (Larus argentatus) in our study colony located at the outer port of Zeebrugge (Belgium) was lower than that of older individuals (Φ>1yr = 0.75). All 10 models best supported by our data included nestling growth rate, suggesting that variability in first‐year survival may be linked primarily to individual variation in growth. First‐year survival was negatively correlated with hatching date and rank order after brood reduction. Hence, carry‐over effects of breeding season events such as timing of breeding, early development, and social status had an influence on survival of Herring Gulls after fledging. Furthermore, we found sex‐biased mortality in first‐year Herring Gulls, with females (Φ1yr = 0.45) surviving better than males (Φ1yr = 0.38). Although adult survival is generally regarded as the key parameter driving population trajectories in long‐lived species, juvenile survival has recently been acknowledged as an important source of variability in population growth rates. Thus, increasing our knowledge of factors affecting age‐specific survival rates is necessary to improve our understanding of population dynamics and ultimately life‐history variation.  相似文献   

15.
How much effort to expend in any one bout of reproduction is among the most important decisions made by an individual that breeds more than once. According to life-history theory, reproduction is costly, and individuals that invest too much in a given reproductive bout pay with reduced reproductive output in the future. Likewise, investing too little does not maximize reproductive potential. Because reproductive effort relative to output can vary with predictable and unpredictable challenges and opportunities, no single level of reproductive effort maximizes fitness. This leads to the prediction that individuals possessing behavioural mechanisms to buffer challenges and take advantage of opportunities would incur fitness benefits. Here, we review evidence in birds, primarily of altricial species, for the presence of at least two such mechanisms and evidence for and against the seasonal coordination of these mechanisms through seasonal changes in plasma concentrations of the pituitary hormone prolactin. First, the seasonal decline in clutch size of most bird species may partially offset a predictable seasonal decline in the reproductive value of offspring. Second, establishing a developmental sibling-hierarchy among offspring may hedge against unpredictable changes in resource availability and offspring viability or quality, and minimize energy expenditure in raising a brood. The hierarchy may be a product, in part, of the timing of incubation onset relative to clutch completion and the rate of yolk androgen deposition during the laying cycle. Because clutch size should influence the effects of both these traits on the developmental hierarchy, we predicted and describe evidence in some species that females adjust the timing of incubation onset and rate of yolk androgen deposition to match clutch size. Studies on domesticated precocial species reveal an inhibitory effect of the pituitary hormone prolactin on egg laying, suggesting a possible hormonal basis for the regulation of clutch size. Studies on the American kestrel (Falco sparverius) and other species suggest that the seasonal increase in plasma concentrations of prolactin may regulate both a seasonal advance in the timing of incubation onset and a seasonal increase in the rate of yolk androgen deposition. These observations, together with strong conceptual arguments published previously, raise the possibility that a single hormone, prolactin, functions as the basis of a common mechanism for the seasonal adjustment of reproductive effort. However, a role for prolactin in regulating clutch size in any species is not firmly established, and evidence from some species indicates that clutch size may not be coupled to the timing of incubation onset and rate of yolk androgen deposition. A dissociation between the regulation of clutch size and the regulation of incubation onset and yolk androgen deposition may enable an independent response to the predictable and unpredictable challenges and opportunities faced during reproduction.  相似文献   

16.
Parental effort has a direct impact on individual fitness. Theoretical models exploring how parental effort evolves to cope with offspring demand and sexual conflicts may differ in the assumptions they make in respect to the genetic heritability of parental behaviours. Only a few attempts, however, have been made to estimate the heritability of parental behaviours and their possible co‐evolution with offspring solicitation behaviour. Analysing parent and offspring behaviours in four generations of cross‐fostered broods of house sparrows, we found that parental effort (food delivery rate) was repeatable across consecutive broods and heritable across generations. In contrast, parental response to experimentally induced changes in nestling begging was neither repeatable across broods nor heritable across generations or correlated to nestling begging. Thus, the results give no indication for genetic covariance between begging intensity and parental response, but provide the first cross‐fostering‐based evidence for the heritability of parental investment levels across generations.  相似文献   

17.
Life history theory is an essential framework to understand the evolution of reproductive allocation. It predicts that individuals of long‐lived species favour their own survival over current reproduction, leading individuals to refrain from reproducing under harsh conditions. Here we test this prediction in a long‐lived bird species, the Siberian jay Perisoreus infaustus. Long‐term data revealed that females rarely refrain from breeding, but lay smaller clutches in unfavourable years. Neither offspring body size, female survival nor offspring survival until the next year was influenced by annual condition, habitat quality, clutch size, female age or female phenotype. Given that many nests failed due to nest predation, the variance in the number of fledglings was higher than the variance in the number of eggs and female survival. An experimental challenge with a novel pathogen before egg laying largely replicated these patterns in two consecutive years with contrasting conditions. Challenged females refrained from breeding only in the unfavourable year, but no downstream effects were found in either year. Taken together, these findings demonstrate that condition‐dependent reproductive allocation may serve to maintain female survival and offspring quality, supporting patterns found in long‐lived mammals. We discuss avenues to develop life history theory concerning strategies to offset reproductive costs.  相似文献   

18.
Managers of cooperative breeding programs and re‐introduction projects are increasingly concerned with the risk of disease transmission when specimens are transferred among facilities or between facilities and the natural environment. We used data maintained in North American studbooks to estimate the potential risks of disease transmission by direct and indirect contact of specimens in the American Zoo and Aquarium Association’s Elephant Species Survival Plan. Histological evidence for a novel herpesvirus disease transmitted between and within elephant species housed in North American facilities prompted an examination of the scope of possible transmission routes within the captive population. We found that, compared with other species managed through Species Survival Plans, elephants experience relatively few transfers between zoos. Nevertheless, the number of direct contacts with other elephants born during the study period of 1983–1996 (excluding stillbirths) was much higher than we had anticipated (μ = 25 ± 27; N = 59) and the number of potential indirect contacts was surprisingly large (μ = 143 ± 92; N = 59). Although these high rates of potential contacts complicate exact identification of infection pathways for herpesvirus, we were able to propose potential routes of transmission for the histologically identified cases. Furthermore, the extraction of data from studbooks allowed us to readily identify other specimens that did not succumb to the disease despite similar exposure. Moreover, we were able to identify other possible cases to recommend for histological examination. Herein we reveal the possibilities of multiple disease transmission pathways and demonstrate how complex the patterns of transmission can be, confounded by the unknown latency of this novel herpesvirus. This emphasizes the need for zoo veterinarians and cooperative breeding programs to consider the full potential for disease transmission associated with each and every inter‐zoo transfer of specimens. Zoo Biol 20:89–101, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

19.
Inbreeding depression, the reduced fitness of offspring of closely related parents, is commonplace in both captive and wild populations and has important consequences for conservation and mating system evolution. However, because of the difficulty of collecting pedigree and life‐history data from wild populations, relatively few studies have been able to compare inbreeding depression for traits at different points in the life cycle. Moreover, pedigrees give the expected proportion of the genome that is identical by descent (IBDg) whereas in theory with enough molecular markers realized IBDg can be quantified directly. We therefore investigated inbreeding depression for multiple life‐history traits in a wild population of banded mongooses using pedigree‐based inbreeding coefficients (fped) and standardized multilocus heterozygosity (sMLH) measured at 35–43 microsatellites. Within an information theoretic framework, we evaluated support for either fped or sMLH as inbreeding terms and used sequential regression to determine whether the residuals of sMLH on fped explain fitness variation above and beyond fped. We found no evidence of inbreeding depression for survival, either before or after nutritional independence. By contrast, inbreeding was negatively associated with two quality‐related traits, yearling body mass and annual male reproductive success. Yearling body mass was associated with fped but not sMLH, while male annual reproductive success was best explained by both fped and residual sMLH. Thus, our study not only uncovers variation in the extent to which different traits show inbreeding depression, but also reveals trait‐specific differences in the ability of pedigrees and molecular markers to explain fitness variation and suggests that for certain traits, genetic markers may capture variation in realized IBDg above and beyond the pedigree expectation.  相似文献   

20.
For oviparous species such as birds, conditions experienced while in the egg can have long‐lasting effects on the individual. The impact of subtle changes in incubation temperature on nestling development, however, remains poorly understood, especially for open‐cup nesting species with altricial young. To investigate how incubation temperature affects nestling development and survival in such species, we artificially incubated American robin (Turdus migratorius) eggs at 36.1°C (“Low” treatment) and 37.8°C (“High” treatment). Chicks were fostered to same‐age nests upon hatching, and we measured mass, tarsus, and wing length of experimental nestlings and one randomly selected, naturally incubated (“Natural”), foster nest‐mate on days 7 and 10 posthatch. We found significant effects of incubation temperature on incubation duration, growth, and survival, in which experimentally incubated nestlings had shorter incubation periods (10.22, 11.50, and 11.95 days for High, Low, and Natural eggs, respectively), and nestlings from the Low treatment were smaller and had reduced survival compared to High and Natural nestlings. These results highlight the importance of incubation conditions during embryonic development for incubation duration, somatic development, and survival. Moreover, these findings indicate that differences in incubation temperature within the natural range of variation can have important carryover effects on growth and survival in species with altricial young.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号