首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低温而不是光周期调控中国亚热带裸子植物的出芽物候 摘要:被子植物春季物候的调控机制已经得到了广泛的研究。然而,裸子植物和被子植物在3亿年前就产生分化,裸子植物与被子植物的物候可能是受不同的因素所调控。亚热带植物物候的调节机制在很大程度上尚不明确,亚热带裸子植物物候是否由冷激需求和光照调控仍未得到验证。本研究在人工气候箱中设置了3个冷激处理和3 个光周期处理,并对切枝的出芽期进行了为期8周的研究。实验中我们测试了8种裸子植物:柳杉(Cryptomeria japonica)、杉木(Cunninghamia lanceolata)、柏树(Cupressus funebris)、银杏(Ginkgo biloba)、水杉(Metasequoia glyptostroboides)、马尾松(Pinus massoniana)、金钱 松(Pseudolarix amabilis)和罗汉松(Podocarpus macrophyllus),检验其出芽物候是否对光周期敏感或者是否具有较强的冷激需求,以及这两种因素哪个对促进出芽更为重要。研究结果表明,对于裸子植物,冷 激促进了出芽并提高了出芽率,而且裸子植物需要适度的低温天数来实现出芽。有趣的是,在同一森 林中裸子植物比被子植物对积温的需求更高。与德国温带裸子植物(194–600 d · °C)相比,亚热带裸子植 物(814–1150 d · °C)对积温的需求更高。光周期对裸子植物出芽的影响较小,说明冷激对裸子植物出芽的 促进作用大于光周期。这些结果表明,随着全球气候持续变暖,冬季气温的升高不仅会影响亚热带被子植物也会影响裸子植物的物候,从而可能导致春季出芽期的延迟。  相似文献   

2.
Autumn senescence regulates multiple aspects of ecosystem function, along with associated feedbacks to the climate system. Despite its importance, current understanding of the drivers of senescence is limited, leading to a large spread in predictions of how the timing of senescence, and thus the length of the growing season, will change under future climate conditions. The most commonly held paradigm is that temperature and photoperiod are the primary controls, which suggests a future extension of the autumnal growing season as global temperatures rise. Here, using two decades of ground‐ and satellite‐based observations of temperate deciduous forest phenology, we show that the timing of autumn senescence is correlated with the timing of spring budburst across the entire eastern United States. On a year‐to‐year basis, an earlier/later spring was associated with an earlier/later autumn senescence, both for individual species and at a regional scale. We use the observed relationship to develop a novel model of autumn phenology. In contrast to current phenology models, this model predicts that the potential response of autumn phenology to future climate change is strongly limited by the impact of climate change on spring phenology. Current models of autumn phenology therefore may overpredict future increases in the length of the growing season, with subsequent impacts for modeling future CO2 uptake and evapotranspiration.  相似文献   

3.
Shifts in the timing of spring phenology are a central feature of global change research. Long‐term observations of plant phenology have been used to track vegetation responses to climate variability but are often limited to particular species and locations and may not represent synoptic patterns. Satellite remote sensing is instead used for continental to global monitoring. Although numerous methods exist to extract phenological timing, in particular start‐of‐spring (SOS), from time series of reflectance data, a comprehensive intercomparison and interpretation of SOS methods has not been conducted. Here, we assess 10 SOS methods for North America between 1982 and 2006. The techniques include consistent inputs from the 8 km Global Inventory Modeling and Mapping Studies Advanced Very High Resolution Radiometer NDVIg dataset, independent data for snow cover, soil thaw, lake ice dynamics, spring streamflow timing, over 16 000 individual measurements of ground‐based phenology, and two temperature‐driven models of spring phenology. Compared with an ensemble of the 10 SOS methods, we found that individual methods differed in average day‐of‐year estimates by ±60 days and in standard deviation by ±20 days. The ability of the satellite methods to retrieve SOS estimates was highest in northern latitudes and lowest in arid, tropical, and Mediterranean ecoregions. The ordinal rank of SOS methods varied geographically, as did the relationships between SOS estimates and the cryospheric/hydrologic metrics. Compared with ground observations, SOS estimates were more related to the first leaf and first flowers expanding phenological stages. We found no evidence for time trends in spring arrival from ground‐ or model‐based data; using an ensemble estimate from two methods that were more closely related to ground observations than other methods, SOS trends could be detected for only 12% of North America and were divided between trends towards both earlier and later spring.  相似文献   

4.
Several physiological processes controlling tree phenology remain poorly understood and in particular bud dormancy. Many studies have emphasised the action of chilling temperatures in breaking dormancy. However, the effect of the preceding summer temperatures has rarely been investigated although there is some evidence that they may be involved in the settlement and intensity of dormancy as well as cold acclimation. In this paper, thermal time to budburst in relation to the duration of chilling outdoors, preceding summer temperatures and forcing temperatures was studied by outdoors experiments in seedlings of Platanus acerifolia , Vitis vinifera , Quercus pubescens and Castanea sativa . Results showed that temperatures of the preceding summer had no significant effect on the timing of budburst, P. acerifolia and Q. pubescens showed a very weak response to the duration of chilling, and the phenological characteristics of each species were found to be adapted to the climate conditions of its own geographical area. The phenological model used in this study explained 82–100% of the variance of the data without taking into account summer temperatures. Thus, although summer temperatures may be well involved in the intensity of dormancy and cold hardiness, they do not significantly affect budburst and therefore may not need to be considered in phenological models for predicting budburst.  相似文献   

5.
Abiotic environmental change, local species extinctions and colonization of new species often co‐occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2). Colonists with resource‐acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C‐above‐ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity‐dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.  相似文献   

6.
7.
Many studies, largely from cool‐temperate latitudes, have investigated the relationship between the timing of biological events and changes in climatic conditions during the past few decades. Relatively little is known about the response of plants and animals at lower latitudes. Here we show that the average first spring flight of 23 butterfly species in the Central Valley of California has advanced to an earlier date over the past 31 years. Among the species that have appeared significantly earlier, the average shift is 24 days. Climatic conditions (largely winter temperature and precipitation) are found to explain a large part of the variation in changing date of first flight. These results suggest a strong ecological influence of changing climatic conditions on a suite of animals from a mid‐latitude, Mediterranean climate.  相似文献   

8.
Climate change has resulted in major changes in the phenology—i.e. the timing of seasonal activities, such as flowering and bird migration—of some species but not others. These differential responses have been shown to result in ecological mismatches that can have negative fitness consequences. However, the ways in which climate change has shaped changes in biodiversity within and across communities are not well understood. Here, we build on our previous results that established a link between plant species'' phenological response to climate change and a phylogenetic bias in species'' decline in the eastern United States. We extend a similar approach to plant and bird communities in the United States and the UK that further demonstrates that climate change has differentially impacted species based on their phylogenetic relatedness and shared phenological responses. In plants, phenological responses to climate change are often shared among closely related species (i.e. clades), even between geographically disjunct communities. And in some cases, this has resulted in a phylogenetically biased pattern of non-native species success. In birds, the pattern of decline is phylogenetically biased but is not solely explained by phenological response, which suggests that other traits may better explain this pattern. These results illustrate the ways in which phylogenetic thinking can aid in making generalizations of practical importance and enhance efforts to predict species'' responses to future climate change.  相似文献   

9.
10.
11.
气候变化对植物物候产生了重要影响,春季萌芽时间的变化不仅会通过改变植物的光合作用影响碳汇能力,还会通过改变群落内的种间关系影响生态系统结构和功能。因此,掌握群落内不同树种春季萌芽对气候变化的响应对于深刻理解物候时间位分化、认识陆地生态系统碳水循环和能量平衡具有重要意义。为提高春季物候模型的预测精度,阐明气候变化对不同树种春季萌芽的影响,以鹅耳枥(Carpinus turczaninowii)、黑桦(Betula dahurica)、华北落叶松(Larix principis-rupprechtii)、糠椴(Tilia mandshurica)和元宝枫(Acer truncatum)5个温带森林的典型树种为研究对象,通过剪枝实验分析了冬季冷激、春季温度和光周期对枝条春季萌芽时间的影响。结果表明,温度升高和冷激增加显著提前了所有树种的春季萌芽时间,从5℃到20℃,春季萌芽时间平均提前了54.5 d;在较高的冷激条件下,春季萌芽时间平均缩短了17.8 d;光周期对各树种春季萌芽时间均没有显著影响,8 h和16 h光周期条件下各树种平均萌芽时间分别为30.3和30.5 d。此外,随着温度升高,...  相似文献   

12.
Temperature and photoperiod are important Zeitgebers for plants and pollinators to synchronize growth and reproduction with suitable environmental conditions and their mutualistic interaction partners. Global warming can disturb this temporal synchronization since interacting species may respond differently to new combinations of photoperiod and temperature under future climates, but experimental studies on the potential phenological responses of plants and pollinators are lacking. We simulated current and future combinations of temperature and photoperiod to assess effects on the overwintering and spring phenology of an early flowering plant species (Crocus sieberi) and the Western honey bee (Apis mellifera). We could show that increased mean temperatures in winter and early spring advanced the flowering phenology of C. sieberi and intensified brood rearing activity of A. mellifera but did not advance their brood rearing activity. Flowering phenology of C. sieberi also relied on photoperiod, while brood rearing activity of A. mellifera did not. The results confirm that increases in temperature can induce changes in phenological responses and suggest that photoperiod can also play a critical role in these responses, with currently unknown consequences for real‐world ecosystems in a warming climate.  相似文献   

13.
Contrary to the generally advanced spring leaf unfolding under global warming, the effects of the climate warming on autumn leaf senescence are highly variable with advanced, delayed, and unchanged patterns being all reported. Using one million records of leaf phenology from four dominant temperate species in Europe, we investigated the temperature sensitivities of spring leaf unfolding and autumn leaf senescence (ST, advanced or delayed days per degree Celsius). The ST of spring phenology in all of the four examined species showed an increase and decrease during 1951–1980 and 1981–2013, respectively. The decrease in the ST during 1981–2013 appears to be caused by reduced accumulation of chilling units. As with spring phenology, the ST of leaf senescence of early successional and exotic species started to decline since 1980. In contrast, for late successional species, the ST of autumn senescence showed an increase for the entire study period from 1951 to 2013. Moreover, the impacts of rising temperature associated with global warming on spring leaf unfolding were stronger than those on autumn leaf senescence. The timing of leaf senescence was positively correlated with the timing of leaf unfolding during 1951–1980. However, as climate warming continued, the differences in the responses between spring and autumn phenology gradually increased, so that the correlation was no more significant during 1981–2013. Our results further suggest that since 2000, due to the decreased temperature sensitivity of leaf unfolding the length of the growing season has not increased any more. These finding needs to be addressed in vegetation models used for assessing the effects of climate change.  相似文献   

14.
Climate change has resulted in major changes in plant phenology across the globe that includes leaf‐out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf‐out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf‐out date to climate factors exhibits phylogenetic signal. We used a 52‐year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf‐out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf‐out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf‐out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf‐out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non‐native species. Earlier leaf‐out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf‐out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf‐out sensitivity.  相似文献   

15.
The rise in spring temperatures over the past half‐century has led to advances in the phenology of many nontropical plants and animals. As species and populations differ in their phenological responses to temperature, an increase in temperatures has the potential to alter timing‐dependent species interactions. One species‐interaction that may be affected is the competition for light in deciduous forests, where early vernal species have a narrow window of opportunity for growth before late spring species cast shade. Here we consider the Marsham phenology time series of first leafing dates of thirteen tree species and flowering dates of one ground flora species, which spans two centuries. The exceptional length of this time series permits a rare comparison of the statistical support for parameter‐rich regression and mechanistic thermal sensitivity phenology models. While mechanistic models perform best in the majority of cases, both they and the regression models provide remarkably consistent insights into the relative sensitivity of each species to forcing and chilling effects. All species are sensitive to spring forcing, but we also find that vernal and northern European species are responsive to cold temperatures in the previous autumn. Whether this sensitivity reflects a chilling requirement or a delaying of dormancy remains to be tested. We then apply the models to projected future temperature data under a fossil fuel intensive emissions scenario and predict that while some species will advance substantially others will advance by less and may even be delayed due to a rise in autumn and winter temperatures. Considering the projected responses of all fourteen species, we anticipate a change in the order of spring events, which may lead to changes in competitive advantage for light with potential implications for the composition of temperate forests.  相似文献   

16.
Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high‐latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down‐regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change.  相似文献   

17.
Observed phenological changes can be explained either by individual phenotypic plasticity or by evolutionary changes, but there is more evidence pointing towards phenotypic plasticity to explain the mechanism behind changes in bird phenology. However, most studies on phenology have been conducted on insectivorous bird species for which breeding is closely tied to temperature and insect emergence. In this study, we examined the consequences of climatic conditions on the nesting phenology of temperate breeding Canada Geese Branta canadensis maxima, which rely on a continuous food supply, during a 14‐year period (2003–16). We determined whether laying dates were plastically adjusted to spring environmental conditions, and whether this adjustment resulted in a laying date advancement. We further estimated the strength and shape of selection acting on breeding timing, by looking at the effect of laying date on the relative number of young successfully hatched in a nest. We found that Geese plastically adjusted their laying date to spring maximum temperature (and not to precipitation or ice break‐up), resulting in a 9‐day advancement of laying date in the population for that period. Laying date was also moderately repeatable (r = 0.23) and subject to directional selection, but stabilizing selection was negligible. We thus demonstrate how Canada Geese plastically adjust laying dates to temperature, which may further be beneficial to nesting success. Evolutionary change of laying date to selection related to climate change, however, is still possible.  相似文献   

18.
The timing of the end of the vegetation growing season (EOS) plays a key role in terrestrial ecosystem carbon and nutrient cycles. Autumn phenology is, however, still poorly understood, and previous studies generally focused on few species or were very limited in scale. In this study, we applied four methods to extract EOS dates from NDVI records between 1982 and 2011 for the Northern Hemisphere, and determined the temporal correlations between EOS and environmental factors (i.e., temperature, precipitation and insolation), as well as the correlation between spring and autumn phenology, using partial correlation analyses. Overall, we observed a trend toward later EOS in ~70% of the pixels in Northern Hemisphere, with a mean rate of 0.18 ± 0.38 days yr?1. Warming preseason temperature was positively associated with the rate of EOS in most of our study area, except for arid/semi‐arid regions, where the precipitation sum played a dominant positive role. Interestingly, increased preseason insolation sum might also lead to a later date of EOS. In addition to the climatic effects on EOS, we found an influence of spring vegetation green‐up dates on EOS, albeit biome dependent. Our study, therefore, suggests that both environmental factors and spring phenology should be included in the modeling of EOS to improve the predictions of autumn phenology as well as our understanding of the global carbon and nutrient balances.  相似文献   

19.
20.
Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6–5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goal was to dissect how temperature affects timing of spring budburst, flowering, and autumn leaf coloring for functional groups with different growth habits, phenological niches, and xylem anatomy. Warming advanced budburst of six deciduous woody species by 5–15 days and delayed leaf coloring by 18–21 days, resulting in an extension of the growing season by as much as 20–29 days. Spring temperature accumulation was strongly correlated with budburst date, but temperature alone cannot explain the diverse budburst responses observed among plant functional types. Ring‐porous trees showed a consistent temperature response pattern across years, suggesting these species are sensitive to photoperiod. Conversely, diffuse‐porous species responded differently between years, suggesting winter chilling may be more important in regulating budburst. Budburst of the ring‐porous Quercus alba responded nonlinearly to warming, suggesting evolutionary constraints may limit changes in phenology, and therefore productivity, in the future. Warming caused a divergence in flowering times among species in the forest community, resulting in a longer flowering season by 10‐16 days. Temperature was a good predictor of flowering for only four of the seven species studied here. Observations of interannual temperature variability overpredicted flowering responses in spring‐blooming species, relative to our warming experiment, and did not consistently predict even the direction of flowering shifts. Experiments that push temperatures beyond historic variation are indispensable for improving predictions of future changes in phenology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号