首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
Monoliths of a fertile, N limited, C3 grassland community were subjected (or not) to an atmospheric CO2 enrichment (600 µmol mol‐‐1) using a Mini‐FACE system, from August 1998 to June 2001 and were subjected to two contrasting cutting frequencies (3 and 6 cuts per year). We report here the effects of the CO2 and cutting frequency factors on the plant community structure and its diversity. Species‐specific responses to elevated CO2 and cutting frequency were observed, which resulted in significant changes in the botanical composition of the grassland monoliths. Elevated CO2 significantly increased the proportion of dicotyledones (forbs + legumes) and reduced that of the monocotyledones (grasses). Management differentiated this response as elevated CO2 increased the proportion of forbs when infrequently and of legumes when frequently defoliated. However, among the two dominant forbs species only one was significantly enhanced by elevated CO2. Moreover, not all grass species responded negatively to high CO2. At a low cutting frequency, the observed decline under ambient CO2 in species diversity (Shannon‐Weaver index) and in forb species number was partly alleviated by elevated CO2. This experiment shows that the botanical composition of temperate grasslands is likely to be affected by the current rise (+ 0.5% per year) in the atmospheric CO2 concentration, and that grassland management guidelines may need to be adapted to a future high CO2 world.  相似文献   

2.
Atmospheric CO2 enrichment can affect plants directly via impacts on their performance, and indirectly, by environment‐specific traits passed down from the mother plant to the offspring. Such maternal effects can significantly alter plant species composition, especially in annual ecosystems where the entire community is recruited from seeds each year. This study assessed impacts of future, high CO2 (440 and 600 ppm) and pre‐industrial, low CO2 (280 ppm) on seed traits and offspring performance in three plant functional groups (grasses, legumes, forbs) comprising 17 annual species of a semi‐arid Mediterranean community. In grasses, seed size and seed‐reserve utilization as expressed by root elongation tended to be higher at high than at low maternal CO2, but total seed protein concentration and protein pool decreased with increasing maternal CO2. The response of seed size to high CO2 increased with increasing leaf‐mass fraction in grasses, and decreased with decreasing concentration of leaf non‐structural carbohydrates in legumes. Offspring development was studied at ambient CO2, and showed reduced emergence success of high‐CO2 progeny compared with low‐CO2 progeny in forbs. Total biomass was lower in high‐CO2 than in low‐CO2 offspring across all functional groups. The biomass response to high maternal CO2 in legume offspring correlated inversely with seed size, resulting in up to 25% lower biomass in large‐seeded species. Under the scenario of maternal effects combined with projected changes in biomass and seed production under direct exposure to high CO2, legumes might gain and forbs and grasses might lose from future CO2 enrichment. Most changes in seed traits and offspring performance were greater between pre‐industrial and near‐future CO2 than between near‐ and remote‐future CO2 concentrations. Hence, maternal effects of increasing CO2 may contribute to current changes in plant productivity and species composition, and they need to be considered when predicting impacts of global change on plant communities.  相似文献   

3.
Determining underlying physiological patterns governing plant productivity and diversity in grasslands are critical to evaluate species responses to future environmental conditions of elevated CO2 and nitrogen (N) deposition. In a 9‐year experiment, N was added to monocultures of seven C3 grassland species exposed to elevated atmospheric CO2 (560 μmol CO2 mol?1) to evaluate how N addition affects CO2 responsiveness in species of contrasting functional groups. Functional groups differed in their responses to elevated CO2 and N treatments. Forb species exhibited strong down‐regulation of leaf Nmass concentrations (?26%) and photosynthetic capacity (?28%) in response to elevated CO2, especially at high N supply, whereas C3 grasses did not. Hence, achieved photosynthetic performance was markedly enhanced for C3 grasses (+68%) in elevated CO2, but not significantly for forbs. Differences in access to soil resources between forbs and grasses may distinguish their responses to elevated CO2 and N addition. Forbs had lesser root biomass, a lower distribution of biomass to roots, and lower specific root length than grasses. Maintenance of leaf N, possibly through increased root foraging in this nutrient‐poor grassland, was necessary to sustain stimulation of photosynthesis under long‐term elevated CO2. Dilution of leaf N and associated photosynthetic down‐regulation in forbs under elevated [CO2], relative to the C3 grasses, illustrates the potential for shifts in species composition and diversity in grassland ecosystems that have significant forb and grass components.  相似文献   

4.
The effects of elevated atmospheric CO2 (475 μL L?1) on in situ decomposition of plant litter and animal faecal material were studied over 2 years in a free air CO2 enrichment (FACE) facility. The pasture was grazed by sheep and contained a mixture of C3 and C4 grasses, legumes and forbs. There was no effect of elevated CO2 on decomposition within plant species but marked differences between species with faster decomposition in dicots; a group that increased in abundance at elevated CO2. Decomposition of mixed herbage root material occurred at a similar rate to that of leaf litter suggesting that any CO2‐induced increase in carbon allocation to roots would not reduce rates of decomposition. Sheep faeces resulting from a ‘high‐CO2 diet’ decomposed significantly slower during summer but not during winter. The overall outcome of these experiments were explored using scenarios that took account of changes in botanical composition, allocation to roots and the presence of herbivores. In the absence of herbivores, elevated CO2 led to a 15% increase in the rate of mass loss and an 18% increase in the rate of nitrogen (N) release. In the presence of herbivores, these effects were partially removed (11% increase in rate of mass loss and 9% decrease in N release rate) because of the recycling occurring through the animals in the form of faeces.  相似文献   

5.
Abstract. The hypothesis that season of defoliation and herbivore selectivity may be as important as level of use in determining plant community response to grazing was tested in a monsoon grassland in northern Australia. Plots, dominated by the tussock grasses Themeda triandra and Chrysopogon fallax, were grazed by cattle at low, medium and high rates of utilization in either the early wet, late wet or dry seasons. Effects of grazing on species composition were greatest in the early wet season when high rates of utilization significantly reduced the proportion and occurrence of Themeda and increased the proportion of forbs. Grazing in the dry season had no significant effect on composition. At medium and high levels of utilization in the early wet season, the pasture responded negatively to defoliation, only partially compensating for plant tissue lost to herbivory. The negative response to defoliation carried over to the next wet season when these same medium and high-grazing treatments produced only 80 % and 60 % growth, respectively, of that in treatments grazed at low levels of utilization or those grazed during the dry season. The frequency of Themeda was still lower, and that of annual grasses and non-leguminous forbs higher, in plots that had been grazed at a high rate of utilization for just eight weeks in the early wet season two years previously. Species richness and diversity were also significantly affected by this grazing disturbance. If species composition is to be maintained in these grasslands then stocking rates must be set at low levels to cope with the combined effect of undercompensation in response to defoliation in the wet season and strong dietary preferences for grazing sensitive species.  相似文献   

6.
Abstract Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south‐east Queensland. In these communities, small‐scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2 , changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2 , total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3 , fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.  相似文献   

7.
Question: How are plant species and functional group composition, and potential sward height affected by implementation of different grazing regimes on previously abandoned semi-natural grassland? Location: The Jizerské mountains, northern Czech Republic. Methods: We established a randomized block experiment with the following treatments: unmanaged control (U), intensive (IG) and extensive (EG) continuous grazing, first cut followed by intensive (ICG) and first cut followed by extensive (ECG) continuous grazing for the rest of the growing season. The percentage cover of all vascular plant species was recorded in 40 permanent plots. Results: Total plant species richness increased in all managed treatments, whereas species number was reduced in U at the end of the experiment. Tall forbs (Aegopodium podagraria, Galium album, Anthriscus sylvestris, Cirsium arvense) as well as tall grasses (Elytrigia repens and Alopecurus pratensis) were more abundant in U. Species associated with both grazing treatments (IG, EG) were Dactylis glomerata, Festuca rubra agg. and Phleum pratense. Agrostis capillaris, Taraxacum spp., Trifolium repens, Ranunculus repens and Cirsium vulgare were promoted by ECG and ICG. Abundance of tall grasses and tall forbs reflected the intensity of management in the order U>EG, ECG>IG, ICG. Prostrate forbs, on the other hand, increased their cover with increasing intensity: ICG>IG>ECG>EG. Conclusions: Plant species composition of semi-natural grasslands is affected by the defoliation regime. Continuous grazing on abandoned grassland alters the sward structure towards a permanent pasture with short, light-sensitive grasses and prostrate forbs. To maintain or enhance plant species richness in semi-natural grasslands, understanding the effects of different grazing regimes on plant species composition is necessary.  相似文献   

8.
Abstract. A semi‐natural grassland in Sweden was exposed to an elevated CO2 concentration during a six‐year open‐top chamber experiment. Vegetation composition was assessed twice a year using the point‐intercept method. The field had been grazed previously, but when the experiment started this was replaced with a cutting regime with one cut (down to ground level) each year in early August. From the third to the sixth year of the study the harvested material was divided into legumes, non‐leguminous forbs and grasses, dried and weighed. Elevated CO2 had an effect on species composition (as analysed by Principal Component Analysis) that increased over time. It also tended to increase diversity (Shannon index) in summer, but reduce it in spring. However, the effects of the weather and/or time on species composition and diversity were much more prominent than CO2 effects. Since the weather was largely directional over time (from dry to wet), with the exception of the fifth year, it was difficult to distinguish between weather effects and changes caused by a changed management regime. In all treatments, grasses increased over time in both mass and point‐intercept measurements, whereas non‐leguminous forbs decreased in mass, but not in point‐intercept measurements. Legumes increased in the point‐intercept measurements, but not in biomass, at elevated CO2, but not in the other treatments. Overall, we found that elevated CO2 affected species composition; however, it was only one of many factors and a rather weak one.  相似文献   

9.
The effects of elevated CO2 and drought on ecophysiological parameters in grassland species have been examined, but few studies have investigated the effect of competition on those parameters under climate change conditions. The objective of this study was to determine the effect of elevated CO2 and drought on the response of plant water relations, gas exchange, chlorophyll a fluorescence and aboveground biomass in four grassland species, as well as to assess whether the type of competition modulates that response. Elevated CO2 in well‐watered conditions increased aboveground biomass by augmenting CO2 assimilation. Drought reduced biomass by reducing CO2 assimilation rate via stomatal limitation and, when drought was more severe, also non‐stomatal limitation. When plants were grown under the combined conditions of elevated CO2 and drought, drought limitation observed under ambient CO2 was reduced, permitting higher CO2 assimilation and consequently reducing the observed decrease in aboveground biomass. The response to climate change was species‐specific and dependent on the type of competition. Thus, the response to elevated CO2 in well‐watered grasses was higher in monoculture than in mixture, while it was higher in mixture compared to monoculture for forbs. On the other hand, forbs were more affected than grasses by drought in monoculture, while in mixture the negative effect of drought was higher in grasses than in forbs, due to a lower capacity to acquire water and mineral nutrients. These differences in species‐level growth responses to CO2 and drought may lead to changes in the composition and biodiversity of the grassland plant community in future climate conditions.  相似文献   

10.
Interspecific variations in carbon (C) allocation and partitioning in the rhizosphere were investigated on 12 Mediterranean species belonging to different family groups (grasses, legumes, non-legume forbs) and having different life cycles. Plants grown individually in artificial soil, in a greenhouse and inoculated with rhizosphere microflora were labelled with 14CO2 for 3 h at the vegetative stage. Rhizosphere respiration was measured during 6 days after which labelled C partitioning between shoots, roots, soil, root washing solution and respiration was estimated. The percentage of assimilated 14C allocated below ground differed significantly between species (41 – 76%) but no significant difference was found between grasses, legumes and non-legume forbs. When expressed as percentage of below-ground 14C, rhizosphere respiration was significantly smaller for non-legume forbs (42%) than for grasses (46%) and legumes (51%). Consequently more 14C was incorporated into root biomass in the former. Half-life of 14CO2 evolution through respiration ranged from 23 h in legumes to 27 h for non-legume forbs and 37 h for grasses. This suggested differences in microbial activities due to quantities and quality of root exuded C. Rhizosphere respiration was positively correlated with the amount of 14C in the solution used to wash the roots on one hand, and root N concentration on the other hand. This led to a functional hierarchy between plant family groups of the overall rhizosphere activity. It went from non-legume forbs being the less active (except Crepis sancta)in terms of respiration and exudation, to grasses and then legumes, the most active but also the richest in nitrogen.  相似文献   

11.
Shrub encroachment can follow grazing or burning release in páramo grasslands. While encroachment decreases herbaceous species richness in some grassland systems, the effects of this process on the herbaceous community in páramo grasslands are currently unknown. We collected data on shrub cover, herbaceous‐species cover and species composition in a páramo grassland 12 years after release from burning and cattle grazing near Zuleta, Ecuador. Topographic and soil measures were also included as predictor variables of differences in community composition. Contrary to studies in other systems, shrub cover did not have a significant effect on herbaceous‐species richness, whereas shrub‐species richness significantly increased with shrub cover. However, shrub cover was associated with significant shifts in herbaceous–community composition. Most notably, there was an increase in some shade‐tolerant forbs and tall‐statured wetland grasses with increasing shrub cover, and a corresponding decrease in some short‐statured grasses and early successional forbs. These results could indicate that the ameliorative effects of shrubs (e.g. frost and wind protection) in harsh alpine environments may partially compensate for the expected competitive effect of shrubs due to shading.  相似文献   

12.
Atmospheric CO2 enrichment usually changes the relative contributions of plant species to biomass production of grasslands, but the types of species favored and mechanisms by which change is mediated differ among ecosystems. We measured changes in the contributions of C3 perennial forbs and C4 grasses to aboveground biomass production of tallgrass prairie assemblages grown along a field CO2 gradient (250–500 μmol mol?1) in central Texas USA. Vegetation was grown on three soil types and irrigated each season with water equivalent to the growing season mean of precipitation for the area. We predicted that CO2 enrichment would increase the forb contribution to community production, and favor tall‐grasses over mid‐grasses by increasing soil water content and reducing the frequency with which soil water fell below a limitation threshold. CO2 enrichment favored forbs over grasses on only one of three soil types, a Mollisol. The grass fraction of production increased dramatically across the CO2 gradient on all soils. Contribution of the tall‐grass Sorghastrum nutans to production increased at elevated CO2 on the two most coarse‐textured of the soils studied, a clay Mollisol and sandy Alfisol. The CO2‐caused increase in Sorghastrum was accompanied by an offsetting decline in production of the mid‐grass Bouteloua curtipendula. Increased CO2 favored the tall‐grass over mid‐grass by increasing soil water content and apparently intensifying competition for light or other resources (Mollisol) or reducing the frequency with which soil water dipped below threshold levels (Alfisol). An increase in CO2 of 250 μmol mol?1 above the pre‐industrial level thus led to a shift in the relative production of established species that is similar in magnitude to differences observed between mid‐grass and tallgrass prairies along a precipitation gradient in the central USA. By reducing water limitation to plants, atmospheric CO2 enrichment may alter the composition and even structure of grassland vegetation.  相似文献   

13.
Six open‐top chambers were installed on the shortgrass steppe in north‐eastern Colorado, USA from late March until mid‐October in 1997 and 1998 to evaluate how this grassland will be affected by rising atmospheric CO2. Three chambers were maintained at current CO2 concentration (ambient treatment), three at twice ambient CO2, or approximately 720 μmol mol?1 (elevated treatment), and three nonchambered plots served as controls. Above‐ground phytomass was measured in summer and autumn during each growing season, soil water was monitored weekly, and leaf photosynthesis, conductance and water potential were measured periodically on important C3 and C4 grasses. Mid‐season and seasonal above‐ground productivity were enhanced from 26 to 47% at elevated CO2, with no differences in the relative responses of C3/C4 grasses or forbs. Annual above‐ground phytomass accrual was greater on plots which were defoliated once in mid‐summer compared to plots which were not defoliated during the growing season, but there was no interactive effect of defoliation and CO2 on growth. Leaf photosynthesis was often greater in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) plants in the elevated chambers, due in large part to higher soil water contents and leaf water potentials. Persistent downward photosynthetic acclimation in P. smithii leaves prevented large photosynthetic enhancement for elevated CO2‐grown plants. Shoot N concentrations tended to be lower in grasses under elevated CO2, but only Stipa comata (C3) plants exhibited significant reductions in N under elevated compared to ambient CO2 chambers. Despite chamber warming of 2.6 °C and apparent drier chamber conditions compared to unchambered controls, above‐ground production in all chambers was always greater than in unchambered plots. Collectively, these results suggest increased productivity of the shortgrass steppe in future warmer, CO2 enriched environments.  相似文献   

14.
To determine the long-term impact of elevated CO2 on primary production of native tallgrass prairie, we compared the responses of tallgrass prairie at ambient and twice-ambient atmospheric CO2 levels over an 8-year period. Plots in open-top chambers (4.5 m diameter) were exposed continuously (24 h) to ambient and elevated CO2 from early April to late October each year. Unchambered plots were monitored also. Above-ground peak biomass was determined by clipping each year in early August, and root growth was estimated by harvesting roots from root ingrowth bags. Plant community composition was censused each year in early June. In the last 2 years of the study, subplots were clipped on 1 June or 1 July, and regrowth was harvested on 1 October. Volumetric soil water content of the 0–100 cm soil layer was determined using neutron scattering, and was generally higher in elevated CO2 plots than ambient. Peak above-ground biomass was greater on elevated CO2 plots than ambient CO2 plots with or without chambers during years with significant plant water stress. Above-ground regrowth biomass was greater under elevated CO2 than under ambient CO2 in a year with late-season water stress, but did not differ in a wetter year. Root ingrowth biomass was also greater in elevated CO2 plots than ambient CO2 plots when water stress occurred during the growing season. The basal cover and relative amount of warm-season perennial grasses (C4) in the stand changed little during the 8-year period, but basal cover and relative amount of cool-season perennial grasses (C3) in the stand declined in the elevated CO2 plots and in ambient CO2 plots with chambers. Forbs (C3) and members of the Cyperaceae (C3) increased in basal cover and relative amount in the stand at elevated compared to ambient CO2. Greater biomass production under elevated CO2 in C4-dominated grasslands may lead to a greater carbon sequestration by those ecosystems and reduce peak atmospheric CO2 concentrations in the future.  相似文献   

15.
We conducted an experiment on responses of weedy species from an orchard ecosystem to elevated CO2 (700–800 μmol mol−1) under low phosphorus (P) soil in an environment-controlled growth chamber. Twelve local weedy species, Poa annua L., Lolium perenne L., Avena fatua L., Vicia cracca L., Medicago lupulina L., Kummerowia striata (Thunb.) Schindl., Veronica didyma Ten., Plantago virginica L., Gnaphalium affine D.Don., Echinochloa crusgalli var. mitis (L.) Beauv., Eleusine indica (L.) Gaertn. and Setaria glauca (L.) P. Beauv., grouped into four functional groups (C3 grass, C3 forb, legume and C4 grass), were used in the experiment. The total plant biomass, P uptake, and mycorrhizal colonization were measured. The results showed that the total biomass of the 12 weedy species tended to increase under elevated CO2. But changes in the total biomass under elevated CO2 significantly differed among functional groups: legumes showed the greatest increase in the total biomass of all functional groups, following the order C3 forbs > C4 grasses > C3 grasses. Elevated CO2 significantly increased mycorrhizal colonization and P uptake of legumes, C3 forbs and C4 grasses but did not change C3 grasses. Positive correlations between mycorrhizal colonization and shoot P concentration, and between total P uptake and total biomass were found under elevated CO2. The results suggested that the interspecific difference in CO2 response at low P availability was caused by the difference in CO2 response in mycorrhizae and P uptake. These differences among species imply that plant interaction in orchard ecosystems may change under future CO2 enrichment.  相似文献   

16.
Plant trait measurement is a very powerful and promising method for assessing the effects of land use change on ecosystem behavior in grasslands, but it is very time-consuming. Hence we pose the following questions for simplifying diagnosis and monitoring: (i) are plant traits (PTs) similar between plant life forms (PLF: grasses, rosettes, upright forbs, legumes) within a plant community? (ii) is it possible to define the main plant community characteristics by measuring traits on one PLF or a limited number of dominant species?Six PTs known for their ability to characterize the capacity of species to exploit resource-rich or -poor environments and for their competitive dominance in response to disturbance (specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), C and N contents, flowering time) were measured on the species of 18 plant communities located in Central Pyrenees. The experiment combined 2 fertility levels and 3 defoliation regimes (cutting, grazing). Comparisons were made between the weighted values at community, PLF and two dominant species levels. Regression analysis shows that there were significant correlations between grasses and rosettes for 4 PTs. For H, N and C:N ratio, data for both grass and rosette PLFs were close to the bisecting line. The largest difference in the intercept was observed for LDMC. On the basis of plant traits weighted for all the species, plant communities were ranked in similar ways for SLA and H (Spearman r > 0.93; p < 0.001) and to a lesser extent for LDMC (r = 0.72; p < 0.001). Convergence in weighted plant traits for different PLFs within a plant community mean that in the studied grasslands, defoliation regime and nutrient availability act as strong filters that impose, at least at PLF level, very similar PFTs. This determines a specific local community structure and composition. An application of this result in managed grasslands is the possibility of focusing on one PLF or a limited number of species for vegetation diagnosis and monitoring.  相似文献   

17.
放牧对短花针茅荒漠草原植物多样性的影响   总被引:4,自引:0,他引:4  
刘文亭  卫智军  吕世杰  王天乐  张爽 《生态学报》2017,37(10):3394-3402
放牧干扰对草原植物多样性影响机制是放牧生态学研究的核心问题。以内蒙古锡林郭勒盟苏尼特右旗的短花针茅荒漠草原的长期放牧控制实验为平台,系统研究了放牧调控下植物多样性随组织尺度转换的影响,为荒漠草原植物多样性尺度推绎提供理论基础。结果显示:1)现存草地物种数未放牧最高,适度放牧次之,重度放牧最低,差异体现在多年生杂类草和一年生草本2个功能群上,且各功能群的权重基本不受放牧强度影响;2)群落尺度,放牧强度没有显著影响丰富度指数,未放牧小区的植物Simpson生态优势度指数、Shannon-Wiener物种多样性指数与Pielou均匀度指数大于适度放牧小区,显著大于重度放牧小区(P0.05);功能群尺度,多年生禾草与一年生草本的多样性指数对放牧无显著响应,多年生杂类草的多样性指数未放牧小区最高,适度放牧小区次之。3)Godron群落稳定性指数显示,适度放牧的小区稳定性高于未放牧小区和重度放牧小区。研究表明,放牧强度的上升使短花针茅荒漠草原不同组织尺度植物多样性降低,但群落稳定性结果显示适度放牧的草地表现出了更高的稳定性,植物多样性与稳定性的权衡将是合理制定区域科学放牧强度的重要途径。  相似文献   

18.
To understand the effects of grazing on grassland plants sexual and clonal recruitment, we conducted a demographic field investigation of species recruitment along a grazing gradient in the Tibetan alpine grassland. Grazing intensity had significant effects on quantity and diversity of sexual and clonal recruitment. Sexual recruitment increased significantly, but clonal offspring production decreased significantly with increased grazing intensity. Grazing intensity had different, significant effects on offspring recruitment of the various functional groups in the community, grasses (GG), sedges (SG), legumes (LG) and forbs (FG). Higher grazing intensity reduced offspring recruitment of GG and SG; it increased offspring recruitment of LG and FG. Seedlings were significantly more abundant in lightly grazed, moderately grazed and heavily grazed meadows than in non-grazed grasslands. Offspring diversity from sexual recruitment was significantly higher than that from clonal recruitment in grazed than in non-grazed grasslands. Our studies indicate that moderate grazing had positive effects on seedling recruitment and offspring diversity, but heavy gazing may alter community succession by affecting recruitment patterns among the four plant functional groups.  相似文献   

19.
Seed production and seed quality in a calcareous grassland in elevated CO2   总被引:2,自引:1,他引:1  
In diverse plant communities the relative contribution of species to community biomass may change considerably in response to elevated CO2. Along with species‐specific biomass responses, reproduction is likely to change as well with increasing CO2 and might further accelerate shifts in species composition. Here, we ask if, after 5 years of CO2 exposure, seed production and seed quality in natural nutrient‐poor calcareous grassland are affected by elevated CO2 (650 μ L L?1 vs 360 μ L L?1) and how this might affect long‐term community dynamics. The effect of elevated CO2 on the number of flowering shoots (+ 24%, P < 0.01) and seeds (+ 29%, P = 0.06) at the community level was similar to above ground biomass responses in this year, suggesting that the overall allocation to sexual reproduction remained unchanged. Compared among functional groups of species we found a 42% increase in seed number (P < 0.01) of graminoids, a 33% increase (P = 0.07) in forbs, and no significant change in legumes (? 38%, n.s.) under elevated CO2. Large responses particularly of two graminoid species and smaller responses of many forb species summed up to the significant or marginally significant increase in seed number of graminoids and forbs, respectively. In several species the increase in seed number resulted both from an increase in flowering shoots and an increase in inflorescence size. In most species, seeds tended to be heavier (+ 12%, P < 0.01), and N‐concentration of seeds was significantly reduced in eight out of 13 species. The fraction of germinating seeds did not differ between seeds produced in ambient and elevated CO2, but time to germination was significantly shortened in two species and prolonged in one species when seeds had been produced in elevated CO2. Results suggest that species specific increases in seed number and changes in seed quality will exert substantial cumulative effects on community composition in the long run.  相似文献   

20.
Wilsey BJ  Polley HW 《Oecologia》2006,150(2):300-309
Plant species in grasslands are often separated into groups (C4 and C3 grasses, and forbs) with presumed links to ecosystem functioning. Each of these in turn can be separated into native and introduced (i.e., exotic) species. Although numerous studies have compared plant traits between the traditional groups of grasses and forbs, fewer have compared native versus introduced species. Introduced grass species, which were often introduced to prevent erosion or to improve grazing opportunities, have become common or even dominant species in grasslands. By virtue of their abundances, introduced species may alter ecosystems if they differ from natives in growth and allocation patterns. Introduced grasses were probably selected nonrandomly from the source population for forage (aboveground) productivity. Based on this expectation, aboveground production is predicted to be greater and root mass fraction to be smaller in introduced than native species. We compared root and shoot distribution and tissue quality between introduced and native C4 grass species in the Blackland Prairie region of Central Texas, USA, and then compared differences to the more well-studied divergence between C4 grasses and forbs. Comparisons were made in experimental monocultures planted with equal-sized transplants on a common soil type and at the same density. Aboveground productivity and C:N ratios were higher, on average, in native grasses than in native forbs, as expected. Native and introduced grasses had comparable amounts of shallow root biomass and tissue C:N ratios. However, aboveground productivity and total N were lower and deep root biomass and root mass fraction were greater in native than introduced grasses. These differences in average biomass distribution and N could be important to ecosystems in cases where native and introduced grasses have been exchanged. Our results indicate that native–introduced status may be important when interpreting species effects on grassland processes like productivity and plant N accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号