首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomass production on low‐grade land is needed to meet future energy demands and minimize resource conflicts. This, however, requires improvements in plant water‐use efficiency (WUE) that are beyond conventional C3 and C4 dedicated bioenergy crops. Here we present the first global‐scale geographic information system (GIS)‐based productivity model of two highly water‐efficient crassulacean acid metabolism (CAM) candidates: Agave tequilana and Opuntia ficus‐indica. Features of these plants that translate to WUE advantages over C3 and C4 bioenergy crops include nocturnal stomatal opening, rapid rectifier‐like root hydraulic conductivity responses to fluctuating soil water potential and the capacity to buffer against periods of drought. Yield simulations for the year 2070 were performed under the four representative concentration pathway (RCPs) scenarios presented in the IPCC's 5th Assessment Report. Simulations on low‐grade land suggest that O. ficus‐indica alone has the capacity to meet ‘extreme’ bioenergy demand scenarios (>600 EJ yr?1) and is highly resilient to climate change (?1%). Agave tequilana is moderately impacted (?11%). These results are significant because bioenergy demand scenarios >600 EJ yr?1 could be met without significantly increasing conflicts with food production and contributing to deforestation. Both CAM candidates outperformed the C4 bioenergy crop, Panicum virgatum L. (switchgrass) in arid zones in the latitudinal range 30°S–30°N.  相似文献   

2.
Barney JN  DiTomaso JM 《PloS one》2011,6(3):e17222
The global push towards a more biomass-based energy sector is ramping up efforts to adopt regionally appropriate high-yielding crops. As potential bioenergy crops are being moved around the world an assessment of the climatic suitability would be a prudent first step in identifying suitable areas of productivity and risk. Additionally, this assessment also provides a necessary step in evaluating the invasive potential of bioenergy crops, which present a possible negative externality to the bioeconomy. Therefore, we provide the first global climate niche assessment for the major graminaceous (9), herbaceous (3), and woody (4) bioenergy crops. Additionally, we contrast these with climate niche assessments for North American invasive species that were originally introduced for agronomic purposes as examples of well-intentioned introductions gone awry. With few exceptions (e.g., Saccharum officinarum, Pennisetum purpureum), the bioenergy crops exhibit broad climatic tolerance, which allows tremendous flexibility in choosing crops, especially in areas with high summer rainfall and long growing seasons (e.g., southeastern US, Amazon Basin, eastern Australia). Unsurprisingly, the invasive species of agronomic origin have very similar global climate niche profiles as the proposed bioenergy crops, also demonstrating broad climatic tolerance. The ecoregional evaluation of bioenergy crops and known invasive species demonstrates tremendous overlap at both high (EI≥30) and moderate (EI≥20) climate suitability. The southern and western US ecoregions support the greatest number of invasive species of agronomic origin, especially the Southeastern USA Plains, Mixed Woods Plains, and Mediterranean California. Many regions of the world have a suitable climate for several bioenergy crops allowing selection of agro-ecoregionally appropriate crops. This model knowingly ignores the complex biotic interactions and edaphic conditions, but provides a robust assessment of the climate niche, which is valuable for agronomists, crop developers, and regulators seeking to choose agro-ecoregionally appropriate crops while minimizing the risk of invasive species.  相似文献   

3.
Merremia peltata is a species with uncertain status in the island nations of the Pacific region. It has been designated introduced and invasive in some countries whereas it is considered native in others. Recent increase in its abundance across some island landscapes have led to calls for its designation as an invasive species of environmental concern with biological control being suggested as a control strategy. Climate change will add to the complications of managing this species since changes in climate will influence its range limits. In this study, we develop a process‐oriented niche model of M. peltata using CLIMEX to investigate the impacts of climate change on its potential distribution. Information on the climatic requirements of M. peltata and its current geographic distribution were used to calibrate the model. The results indicate that under current climate, 273,132 km2 of the land area in the region is climatically unsuitable or marginal for M. peltata whereas 664,524 km2 is suitable to highly suitable. Under current climate, areas of climatic suitability for M. peltata were identified on the archipelagos of Fiji, Papua New Guinea, Solomon Islands and Vanuatu. By the end of the century, some archipelagos like Fiji, Hawaii, New Caledonia and Vanuatu will probably become more suitable while PNG and Solomon Islands become less suitable for M. peltata. The results can be used to inform biosecurity planning, management and conservation strategies on islands.  相似文献   

4.
5.
Bioenergy crops are often classified (and subsequently regulated) according to species that have been evaluated as environmentally beneficial or detrimental, but in practice, management decisions rather than species per se can determine the overall environmental impact of a bioenergy production system. Here, we review the greenhouse gas balance and ‘management swing potential’ of seven different bioenergy cropping systems in temperate and tropical regions. Prior land use, harvesting techniques, harvest timing, and fertilization are among the key management considerations that can swing the greenhouse gas balance of bioenergy from positive to negative or the reverse. Although the management swing potential is substantial for many cropping systems, there are some species (e.g., soybean) that have such low bioenergy yield potentials that the environmental impact is unlikely to be reversed by management. High‐yielding bioenergy crops (e.g., corn, sugarcane, Miscanthus, and fast‐growing tree species), however, can be managed for environmental benefits or losses, suggesting that the bioenergy sector would be better informed by incorporating management‐based evaluations into classifications of bioenergy feedstocks.  相似文献   

6.
Empirical and mechanistic models have both been used to assess the potential impacts of climate change on species distributions, and each modeling approach has its strengths and weaknesses. Here, we demonstrate an approach to projecting climate‐driven changes in species distributions that draws on both empirical and mechanistic models. We combined projections from a dynamic global vegetation model (DGVM) that simulates the distributions of biomes based on basic plant functional types with projections from empirical climatic niche models for six tree species in northwestern North America. These integrated model outputs incorporate important biological processes, such as competition, physiological responses of plants to changes in atmospheric CO2 concentrations, and fire, as well as what are likely to be species‐specific climatic constraints. We compared the integrated projections to projections from the empirical climatic niche models alone. Overall, our integrated model outputs projected a greater climate‐driven loss of potentially suitable environmental space than did the empirical climatic niche model outputs alone for the majority of modeled species. Our results also show that refining species distributions with DGVM outputs had large effects on the geographic locations of suitable habitat. We demonstrate one approach to integrating the outputs of mechanistic and empirical niche models to produce bioclimatic projections. But perhaps more importantly, our study reveals the potential for empirical climatic niche models to over‐predict suitable environmental space under future climatic conditions.  相似文献   

7.
Sweetcane (Erianthus arundinaceus [Retzius] Jeswiet) is an ecologically dominant warm‐season perennial grass native to southern China. It traditionally plays an important role in sugarcane breeding due to its excellent biological traits and genetic relatedness to sugarcane. Recent studies have shown that sweetcane has a great potential in bioenergy and environmental remediation. The objective of this paper is to review the current research on sweetcane biology, phenology, biogeography, agronomy, and conversion technology, in order to explore its development as a bioenergy crop with environmental remediation potential. Sweetcane is resistant to a variety of stressors and can adapt to different growth environments. It can be used for ecological restoration, soil and water conservation, contaminated land repairing, nonpoint source pollutants barriers in buffer strips along surface waters, and as an ornamental and remediation plant on roadsides and in wetlands. Sweetcane exhibits higher biomass yield, calorific value and cellulose content than other bioenergy crops under the same growth conditions, thereby indicating its superior potential in second‐generation biofuel production. However, research on sweetcane as a bioenergy plant is still in its infancy. More works need be conducted on breeding, cultivation, genetic transformation, and energy conversion technologies.  相似文献   

8.
In the current context of ongoing global change, the understanding of how the niches of invasive species may change between different geographical areas or time periods is extremely important for the early detection and control of future invasions. We evaluated the effect of climate and non‐climate variables and the sensitivity to various spatial resolutions (i.e. 1 and 20 km) on niche changes during the invasion of Taraxacum officinale and Ulex europaeus in South America. We estimated niche changes using a combination of principal components analyses (PCA) and reciprocal Ecological Niche Modelling (rENM). We further investigated future invasion dynamics under a severe warming scenario for 2050 to unravel the role of niche shifts in the future potential distribution of the species. We observed a clear niche expansion for both species in South America towards higher temperature, precipitation and radiation relative to their native ranges. In contrast, the set of environmental conditions only occupied in the native ranges (i.e. niche unfilling) were less relevant. The magnitude of the niche shifts did not depend on the resolution of the variables. Models calibrated with occurrences from native range predicted large suitable areas in South America (outside of the Andes range) where T. officinale and U. europaeus are currently absent. Additionally, both species could increase their potential distributions by 2050, mostly in the southern part of the continent. In addition, the niche unfilling suggests high potential to invade additional regions in the future, which is extremely relevant considering the current impact of these species in the Southern Hemisphere. These findings confirm that invasive species can occupy new niches that are not predictable from knowledge based only on climate variables or information from the native range.  相似文献   

9.
The area of dedicated energy crops is expected to increase in Sweden. This will result in direct land use changes, which may affect the carbon stocks in soil and biomass, as well as yield levels and the use of inputs. Carbon dioxide (CO2) fluxes of biomass are often not considered when calculating the climate impact in life cycle assessments (LCA) assuming that the CO2 released at combustion has recently been captured by the biomass in question. With the extended time lag between capture and release of CO2 inherent in many perennial bioenergy systems, the relation between carbon neutrality and climate neutrality may be questioned. In this paper, previously published methodologies and models are combined in a methodological framework that can assist LCA practitioners in interpreting the time‐dependent climate impact of a bioenergy system. The treatment of carbon differs from conventional LCA practice in that no distinction is made between fossil and biogenic carbon. A time‐dependent indicator is used to enable a representation of the climate impact that is not dependent on the choice of a specific characterization time horizon or time of evaluation and that does not use characterization factors, such as global warming potential and global temperature potential. The indicator used to aid in the interpretation phase of this paper is global mean surface temperature change (ΔTs(n)). A theoretical system producing willow for district heating was used to study land use change effects depending on previous land use and variations in the standing biomass carbon stocks. When replacing annual crops with willow this system presented a cooling contribution to ΔTs(n). However, the first years after establishing the willow plantation it presented a warming contribution to ΔTs(n). This behavior was due mainly to soil organic carbon (SOC) variation. A rapid initial increase in standing biomass counteracted the initial SOC loss.  相似文献   

10.
The impact of ecological factors on natural hybridization is of widespread interest. Here, we asked whether climate niche influences hybridization between the two closely related plant species Myriophyllum sibiricum and M. spicatum. Eight microsatellite loci and two chloroplast fragments were used to investigate the occurrence of hybridization between these two species in two co‐occurring regions: north‐east China (NEC) and the Qinghai‐Tibetan Plateau (QTP). The climate niches of the species were quantified by principal component analysis with bioclimatic data, and niche comparisons were performed between the two species in each region. Reciprocal hybridization was observed, and M. sibiricum was favoured as the maternal species. Furthermore, hybrids were rare in NEC but common in the QTP. Accordingly, in NEC, the two species were climatically distinct, and hybrids only occurred in the narrow geographical or ecological transition zone, whereas in the QTP, obvious niche overlaps were found for the two species, and hybrids occurred in multiple contact zones. This association between hybridization pattern and climate niche similarity suggests that the level of hybridization was promoted by niche overlap. Compared with the parental species, similar climate niches were found for the hybrid populations in the QTP, indicating that other environmental factors rather than climate were important for hybrid persistence. Our findings highlight the significance of climate niche with respect to hybridization patterns in plants.  相似文献   

11.
In the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha?1 and 26.83 ± 8.08 Mg C ha?1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.  相似文献   

12.
Conversion of native prairie to agriculture has increased food and bioenergy production but decreased wildlife habitat. However, enrollment of highly erodible cropland in conservation programs has compensated for some grassland loss. In the future, climate change and production of second-generation perennial biofuel crops could further transform agricultural landscapes and increase or decrease grassland area. Switchgrass (Panicum virgatum) is an alternative biofuel feedstock that may be economically and environmentally superior to maize (Zea mays) grain for ethanol production on marginally productive lands. Switchgrass could benefit farmers economically and increase grassland area, but there is uncertainty as to how conversions between rowcrops, switchgrass monocultures and conservation grasslands might occur and affect wildlife. To explore potential impacts on grassland birds, we developed four agricultural land-use change scenarios for an intensively cultivated landscape, each driven by potential future climatic changes and ensuing irrigation limitations, ethanol demand, commodity prices, and continuation of a conservation program. For each scenario, we calculated changes in area for landcover classes and predicted changes in grassland bird abundances. Overall, birds responded positively to the replacement of rowcrops with switchgrass and negatively to the conversion of conservation grasslands to switchgrass or rowcrops. Landscape context and interactions between climate, crop water use, and irrigation availability could influence future land-use, and subsequently, avian habitat quality and quantity. Switchgrass is likely to provide higher quality avian habitat than rowcrops but lower quality habitat than conservation grasslands, and therefore, may most benefit birds in heavily cultivated, irrigation dependent landscapes under warmer and drier conditions, where economic profitability may also encourage conversions to drought tolerant bioenergy feedstocks.  相似文献   

13.
14.
Forests of the European Union (EU) have been intensively managed for decades, and they have formed a significant sink for carbon dioxide (CO2) from the atmosphere over the past 50 years. The reasons for this behavior are multiple, among them are: forest aging, area expansion, increasing plant productivity due to environmental changes of many kinds, and, most importantly, the growth rates of European forest having been higher than harvest rates. EU countries have agreed to reduce total emissions of GHG by 20% in 2020 compared to 1990, excluding the forest sink. A relevant question for climate policy is: how long will the current sink of EU forests be maintained in the near future? And could it be affected by other mitigation measures such as bioenergy? In this article we assess tradeoffs of bioenergy use and carbon sequestration at large scale and describe results of the comparison of two advanced forest management models that are used to project CO2 emissions and removals from EU forests until 2030. EFISCEN, a detailed statistical matrix model and G4M, a geographically explicit economic forestry model, use scenarios of future harvest rates and forest growth information to estimate the future carbon balance of forest biomass. Two scenarios were assessed: the EU baseline scenario and the EU reference scenario (including additional bioenergy and climate policies). Our projections suggest a significant decline of the sink until 2030 in the baseline scenario of about 25–40% (or 65–125 Mt CO2) compared to the models’ 2010 estimate. Including additional bioenergy targets of EU member states has an effect on the development of this sink, which is not accounted in the EU emission reduction target. A sensitivity analysis was performed on the role of future wood demand and proved the importance of this driver for the future sink development.  相似文献   

15.
Cellulosic bioenergy feedstock such as perennial grasses and crop residues are expected to play a significant role in meeting US biofuel production targets. We used an improved version of the Soil and Water Assessment Tool (SWAT) to forecast impacts on watershed hydrology and water quality by implementing an array of plausible land‐use changes associated with commercial bioenergy crop production for two watersheds in the Midwest USA. Watershed‐scale impacts were estimated for 13 bioenergy crop production scenarios, including: production of Miscanthus × giganteus and upland Shawnee switchgrass on highly erodible landscape positions, agricultural marginal land areas and pastures, removal of corn stover and combinations of these options. Water quality, measured as erosion and sediment loading, was forecasted to improve compared to baseline when perennial grasses were used for bioenergy production, but not with stover removal scenarios. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet was reduced between 0 and 8% across these bioenergy crop production scenarios compared to baseline across the study watersheds. Results indicate that bioenergy production scenarios that incorporate perennial grasses reduced the nonpoint source pollutant load at the watershed outlet compared to the baseline conditions (0–20% for nitrate‐nitrogen and 3–56% for mineral phosphorus); however, the reduction rates were specific to site characteristics and management practices.  相似文献   

16.
The Southern High Plains (SHP) region of Texas in the United States, where cotton is grown in a vast acreage, has the potential to grow cellulosic bioenergy crops such as perennial grasses and biomass sorghum (Sorghum bicolor). Evaluation of hydrological responses and biofuel production potential of hypothetical land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops enables better understanding of the associated key agroecosystem processes and provides for the feasibility assessment of the targeted land use change in the SHP. The Soil and Water Assessment Tool (SWAT) was used to assess the impacts of replacing cotton with perennial Alamo switchgrass (Panicum virgatum L.), Miscanthus × giganteus (Miscanthus sinensis Anderss. [Poaceae]), big bluestem (Andropogon gerardii) and annual biomass sorghum on water balances, water use efficiency and biofuel production potential in the Double Mountain Fork Brazos watershed. Under perennial grass scenarios, the average (1994–2009) annual surface runoff from the entire watershed decreased by 6–8% relative to the baseline cotton scenario. In contrast, surface runoff increased by about 5% under the biomass sorghum scenario. Perennial grass land use change scenarios suggested an increase in average annual percolation within a range of 3–22% and maintenance of a higher soil water content during August to April compared to the baseline cotton scenario. About 19.1, 11.1, 3.2 and 8.8 Mg ha?1 of biomass could potentially be produced if cotton area in the watershed would hypothetically be replaced by Miscanthus, switchgrass, big bluestem and biomass sorghum, respectively. Finally, Miscanthus and switchgrass were found to be ideal bioenergy crops for the dryland and irrigated systems, respectively, in the study watershed due to their higher water use efficiency, better water conservation effects, greater biomass and biofuel production potential, and minimum crop management requirements.  相似文献   

17.
The bean leaf beetle, Cerotoma trifurcata, has become a major pest of soybean throughout its North American range. With a changing climate, there is the potential for this pest to further expand its distribution and become an increasingly severe pest in certain regions. To examine this possibility, we developed bioclimatic envelope models for both the bean leaf beetle, and its most important agronomic host plant, soybean (Glycine max). These two models were combined to examine the potential future pest status of the beetle using climate change projections from multiple general circulation models (GCMs) and climate change scenarios. Despite the broad tolerances of soybean, incorporation of host plant availability substantially decreased the suitable and favourable areas for the bean leaf beetle as compared to an evaluation based solely on the climate envelope of the beetle, demonstrating the importance of incorporating biotic interactions in these predictions. The use of multiple GCM–scenario combinations also revealed differences in predictions depending on the choice of GCM, with scenario choice having less of an impact. While the Norwegian model predicted little northward expansion of the beetle from its current northern range limit of southern Ontario and overall decreases in suitable and favourable areas over time, the Canadian and Russian models predict that much of Ontario and Quebec will become suitable for the beetle in the future, as well as Manitoba under the Russian model. The Russian model also predicts expansion of the suitable and favourable areas for the beetle over time. Two predictions that do not depend on our choice of GCM include a decrease in suitability of the Mississippi Delta region and continued favourability of the southeastern United States.  相似文献   

18.
Crop residues are potential biofuel feedstocks, but residue removal may reduce soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass, mitigating the negative effects of residue removal by adding to stable soil C pools. In a no‐till continuous corn bioenergy system in the northern US Corn Belt, we used 13CO2 pulse labeling to trace plant C from a winter rye (Secale cereale) cover crop into different soil C pools for 2 years following rye cover crop termination. Corn stover left as residue (30% of total stover) contributed 66, corn roots 57, rye shoots 61, rye roots 50, and rye rhizodeposits 25 g C m?2 to soil. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools than were aboveground inputs, and much of the root‐derived C was in mineral‐associated soil fractions. After 2 years, both above‐ and belowground inputs had declined substantially, indicating that the majority of both root and shoot inputs are eventually mineralized. Our results underscore the importance of cover crop roots vs. shoots and the importance of cover crop rhizodeposition (33% of total belowground cover crop C inputs) as a source of soil C. However, the eventual loss of most cover crop C from these soils indicates that cover crops will likely need to be included every year in rotations to accumulate soil C.  相似文献   

19.
This study estimated the potential emissions of greenhouse gases (GHG) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass (Panicum virgatum L.), and Miscanthus (Miscanthus × giganteus) will be grown on the current maize‐producing areas in the conterminous United States. We found that the maize ecosystem acts as a mild net carbon source while cellulosic ecosystems (i.e., switchgrass and Miscanthus) act as mild sinks. Nitrogen fertilizer use is an important factor affecting biomass production and N2O emissions, especially in the maize ecosystem. To maintain high biomass productivity, the maize ecosystem emits much more GHG, including CO2 and N2O, than switchgrass and Miscanthus ecosystems, when high‐rate nitrogen fertilizers are applied. For maize, the global warming potential (GWP) amounts to 1–2 Mg CO2eq ha?1 yr?1, with a dominant contribution of over 90% from N2O emissions. Cellulosic crops contribute to the GWP of less than 0.3 Mg CO2eq ha?1 yr?1. Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least GHG intensive at a given cropland. Regional model simulations suggested that substituting Miscanthus for maize to produce biofuel could potentially save land and reduce GHG emissions.  相似文献   

20.
Perennial grasses are promising candidates for bioenergy crops, but species that can escape cultivation and establish self‐sustaining naturalized populations (feral) may have the potential to become invasive. Fertile Miscanthus × giganteus, known as “PowerCane,” is a new potential biofuel crop. Its parent species are ornamental, non‐native Miscanthus species that establish feral populations and are sometimes invasive in the USA. As a first step toward assessing the potential for “PowerCane” to become invasive, we documented its growth and fecundity relative to one of its parent species (Miscanthus sinensis) in competition with native and invasive grasses in common garden experiments located in Columbus, Ohio and Ames, Iowa, within the targeted range of biofuel cultivation. We conducted a 2‐year experiment to compare growth and reproduction among three Miscanthus biotypes—”PowerCane,” ornamental M. sinensis, and feral M. sinensis—at two locations. Single Miscanthus plants were subjected to competition with a native grass (Panicum virgatum), a weedy grass (Bromus inermis), or no competition. Response variables were aboveground biomass, number of shoots, basal area, and seed set. In Iowa, all Miscanthus plants died after the first winter, which was unusually cold, so no further results are reported from the Iowa site. In Ohio, we found significant differences among biotypes in growth and fecundity, as well as significant effects of competition. Interactions between these treatments were not significant. “PowerCane” performed as well or better than ornamental or feral M. sinensis in vegetative traits, but had much lower seed production, perhaps due to pollen limitation. In general, ornamental M. sinensis performed somewhat better than feral M. sinensis. Our findings suggest that feral populations of “PowerCane” could become established adjacent to biofuel production areas. Fertile Miscanthus × giganteus should be studied further to assess its potential to spread via seed production in large, sexually compatible populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号