首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
土壤生物多样性与微量气体(CO2、CH4、N2O)代谢   总被引:12,自引:2,他引:12  
土壤生物是重要的基因库 ,土壤生物多样性是全球生物多样性的重要组成部分。土壤生物是C、N地球化学过程 (土壤库 )的驱动者 ,调控微量气体代谢。在微量气体代谢中 ,土壤微生物具有直接的作用。真菌、CH4 生成菌、CH4 氧化菌、硝化菌以及反硝化菌等是调控微量气体代谢的关键生态功能类群。由于相对大的体积和强大的酶化学分解作用 ,真菌通常主导枯枝落叶的分解活动。“通气—厌气”界面是微生物群落的活跃区域 ,易发生微量气体代谢。“有机—无机”过渡层、水生植物根际区、土壤动物肠道系统是典型的微量气体代谢界面。土壤动物对微量气体代谢的作用通常为前期的和间接的 ,并且又是重要的。节肢动物 (白蚁 )和环节动物 (蚯蚓 )是分别代谢CH4 和N2 O的两个关键性生态功能类群。在研究土壤生物多样性及其对微量气体代谢的作用方面 ,由于土壤生态系统的复杂性 ,需综合传统微生物实验技术与现代同位素技术和分子生物学技术。我国缺乏研究土壤生物多样性及其对微量气体代谢影响的实质性工作 ,有必要开展这方面的研究。  相似文献   

2.
Fluxes of N2O,CH4 and CO2 on afforested boreal agricultural soils   总被引:3,自引:0,他引:3  
After drainage of natural boreal peatlands, the decomposition of organic matter increases and peat soil may turn into a net source of CO2 and N2O, whereas CH4 emission is known to decrease. Afforestation is a potential mitigation strategy to reduce greenhouse gas emission from organic agricultural soils. A static chamber technique was used to evaluate the fluxes of CH4, N2O and CO2 from three boreal organic agricultural soils in western Finland, afforested 1, 6 or 23 years before this study. The mean emissions of CH4 and N2O during the growing seasons did not correlate with the age of the tree stand. All sites were sources of N2O. The highest daily N2O emission during the growing season, measured in the oldest site, was as high as 29 mg N2O m–2d–1. In general, organic agricultural soils are sinks for methane. Here, the oldest site acted as a small sink for methane, whereas the two youngest afforested organic soils were sources for methane with maximum emission rates (up to 154 mg m–2d–1) similar to those reported for minerogenous natural peatlands. Soil respiration rates decreased with the age of the forest. The high soil respiration in the younger sites, probably resulted from the high biomass production of herbs, could create soil anaerobiosis and increase methane production. Our results show that afforestation of agricultural peat soils does not abruptly terminate the N2O emissions during the first two decades, and afforestation can even enhance methane emission for a few years. The carbon accumulation in the developing tree stand can partly compensate the carbon loss from soil.  相似文献   

3.
Winter CO2 CH4 and N2O fluxes on some natural and drained boreal peatlands   总被引:7,自引:0,他引:7  
CO2 and CH4 fluxes during the winter were measured at natural and drained bog and fen sites in eastern Finland using both the closed chamber method and calculations of gas diffusion along a concentration gradient through the snowpack. The snow diffusion results were compared with those obtained by chamber, but the winter flux estimates were derived from chamber data only. CH4 emissions from a poor bog were lower than those from an oligotrophic fen, while both CO2 and CH4 fluxes were higher in theCarex rostrata- occupied marginal (lagg) area of the fen than in the slightly less fertile centre. Average estimated winter CO2-C losses from virgin and drained forested peatlands were 41 and 68 g CO2-C m–2, respectively, accounting for 23 and 21% of the annual total CO2 release from the peat. The mean release of CH4-C was 1.0 g in natural bogs and 3.4 g m–2 in fens, giving rise to winter emissions averaging to 22% of the annual emission from the bogs and 10% of that from the fens. These wintertime carbon gas losses in Finnish natural peatlands were even greater than reported average long-term annual C accumulation values (less than 25g C m–2). The narrow range of 10–30% of the proportion of winter CO2 and CH4 emissions from annual emissions found in Finnish peatlands suggest that a wider generalization in the boreal zone is possible. Drained forested bogs emitted 0.3 g CH4-C m–2 on the average, while the effectively drained fens consumed an average of 0.01 g CH4-C m–2. Reason for the low CH4. efflux or net oxidation in drained peatlands probably lies in low substrate supply and thus low CH4 production in the anoxic deep peat layers. N2O release from a fertilized grassland site in November–May was 0.7 g N2O m–2, accounting for 38% of the total annual emission, while a forested bog released none and two efficiently drained forested fens 0.09 (28% of annual release) and 0.04 g N2O m–2 (27%) during the winter, respectively.  相似文献   

4.
Miscanthus x giganteus's efficacy as an energy crop relies on maintaining low greenhouse gas (GHG) emissions. As demand for Miscanthus is expected to rise to meet bioenergy targets, fertilizers and composts may be employed to increase yields, but will also increase GHG emissions. Manipulation experiments are vital to investigate the consequences of any fertilizer additions, but there is currently no way to measure whole‐plant GHG fluxes from crops taller than 2.5 m, such as Miscanthus, at the experimental plot scale. We employed a unique combination of eddy covariance (EC), soil chambers and an entirely new automated chamber system, SkyBeam, to measure high frequency (ca. hourly) fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from a Miscanthus crop amended with green compost. Untreated controls were also monitored in a fully replicated experimental design. Net ecosystem exchange (NEE) of CO2 was partitioned into soil respiration (Rs), gross primary productivity (GPP) and ecosystem respiration, and the crop was harvested to determine the effect of compost on crop productivity. Compost increased NEE emissions by 100% (p < .05), which was the result of a 20% increase of Rs (p < .06) and a 32% reduction in GPP (p < .05) and biomass of 37% (p < .06). Methane fluxes were small and unaffected by compost addition. N2O emissions increased 34% under compost during an emission event; otherwise, fluxes were low and often negative, even under dry conditions. Diurnal variation in N2O fluxes, with uptake during the day and emission at night was observed. These fluxes displayed a negative relationship with soil temperature and a hitherto undescribed diurnal temperature hysteresis. We conclude that compost addition negatively affected the productivity and environmental effects of Miscanthus cultivation during the first year following application.  相似文献   

5.
《Global Change Biology》2018,24(5):1843-1872
Central European grasslands are characterized by a wide range of different management practices in close geographical proximity. Site‐specific management strategies strongly affect the biosphere–atmosphere exchange of the three greenhouse gases (GHG) carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). The evaluation of environmental impacts at site level is challenging, because most in situ measurements focus on the quantification of CO2 exchange, while long‐term N2O and CH4 flux measurements at ecosystem scale remain scarce. Here, we synthesized ecosystem CO2, N2O, and CH4 fluxes from 14 managed grassland sites, quantified by eddy covariance or chamber techniques. We found that grasslands were on average a CO2 sink (−1,783 to −91 g CO2 m−2 year−1), but a N2O source (18–638 g CO2‐eq. m−2 year−1), and either a CH4 sink or source (−9 to 488 g CO2‐eq. m−2 year−1). The net GHG balance (NGB) of nine sites where measurements of all three GHGs were available was found between −2,761 and −58 g CO2‐eq. m−2 year−1, with N2O and CH4 emissions offsetting concurrent CO2 uptake by on average 21 ± 6% across sites. The only positive NGB was found for one site during a restoration year with ploughing. The predictive power of soil parameters for N2O and CH4 fluxes was generally low and varied considerably within years. However, after site‐specific data normalization, we identified environmental conditions that indicated enhanced GHG source/sink activity (“sweet spots”) and gave a good prediction of normalized overall fluxes across sites. The application of animal slurry to grasslands increased N2O and CH4 emissions. The N2O‐N emission factor across sites was 1.8 ± 0.5%, but varied considerably at site level among the years (0.1%–8.6%). Although grassland management led to increased N2O and CH4 emissions, the CO2 sink strength was generally the most dominant component of the annual GHG budget.  相似文献   

6.
The application of organic materials to soil can recycle nutrients and increase organic matter in agricultural lands. Digestate can be used as a nutrient source for crop production but it has also been shown to stimulate greenhouse gas (GHG) emissions from amended soils. While edaphic factors, such as soil texture and pH, have been shown to be strong determinants of soil GHG fluxes, the impact of the legacy of previous management practices is less well understood. Here we aim to investigate the impact of such legacy effects and to contrast them against soil properties to identify the key determinants of soil GHG fluxes following digestate application. Soil from an already established field experiment was used to set up a pot experiment, to evaluate N2O, CH4 and CO2 fluxes from cattle‐slurry‐digestate amended soils. The soil had been treated with farmyard manure, green manure or synthetic N‐fertilizer, 18 months before the pot experiment was set up. Following homogenization and a preincubation stage, digestate was added at a concentration of 250 kg total N/ha eq. Soil GHG fluxes were then sampled over a 64 day period. The digestate stimulated emissions of the three GHGs compared to controls. The legacy of previous soil management was found to be a key determinant of CO2 and N2O flux while edaphic variables did not have a significant effect across the range of variables included in this experiment. Conversely, edaphic variables, in particular texture, were the main determinant of CH4 flux from soil following digestate application. Results demonstrate that edaphic factors and current soil management regime alone are not effective predictors of soil GHG flux response following digestate application. Knowledge of the site management in terms of organic amendments is required to make robust predictions of the likely soil GHG flux response following digestate application to soil.  相似文献   

7.
We studied the distribution of dissolved O2, CO2, CH4, and N2O in a coastal swamp system in Thailand with the goal to characterize the dynamics of these gases within the system. The gas concentrations varied spatially and seasonally in both surface and ground waters. The entire system was a strong sourcefor CO2 and CH4, and a possible sink for atmospheric N2O. Seasonal variation in precipitation primarily regulated the redox conditions in the system. However, distributions of CO2, CH4, and N2O in the river that received swamp waters were not always in agreement with redox conditions indicated by dissolvedO2 concentrations. Sulfate production through pyriteoxidation occurred in the swamp with thin peat layerunder aerobic conditions and was reflected by elevatedSO 4 2– /Cl in the river water. When SO 4 2– /Cl was high, CO2 and CH4 concentrations decreased, whereas the N2O concentration increased. The excess SO 4 2– in the river water was thus identified as a potential indicator for gas dynamics in this coastal swamp system.  相似文献   

8.
Concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in the water column and their exchange at the water/air interface were studied during the open water period in two freshwater ponds with different catchment characteristics in the northern boreal zone in Finland; either peatlands or coniferous upland forests dominated the catchment of the ponds. Both ponds were supersaturated with dissolved CO2 and CH4 with respect to the equilibrium with the atmosphere, but were close to the equilibrium with N2O. The mean CO2 efflux from the pond was higher in the peatland-dominated catchment (22 mg m–2 h–1) than in the forested catchment (0.7 mg m–2 h–1), whereas the mean CH4 emissions were similar (7.6 and 3.5 mg m–2 d–1, respectively). The fluxes of N2O were generally negligible. The higher CO2 concentrations and efflux in the pond with the peatland-dominated catchment were attributed to a greater input of allochthonous carbon to that pond from its catchment due to its higher water colour and higher total organic carbon (TOC) concentration. The water pH, which also differed between the ponds, could additionally affect the CO2 dynamics. Since the catchment characteristics can regulate aquatic carbon cycles, catchment-scale studies are needed to attain a deeper understanding of the aquatic greenhouse gas dynamics.  相似文献   

9.
Ineson  P.  Coward  P.A.  Hartwig  U.A. 《Plant and Soil》1998,198(1):89-95
Fluxes of nitrous oxide, methane and carbon dioxide were measured from soils under ambient (350 µL L-1) and enhanced (600 µL L-1) carbon dioxide partial pressures (pCO2) at the Free Air Carbon Dioxide Enrichment (FACE) experiment, Eidgenössische Technische Hochschule (ETH), Eschikon, Switzerland in July 1995, using a GC housed in a mobile laboratory. Measurements were made in plots of Lolium perenne maintained under high N input. During the data collection period N fertiliser was applied at a rate of 14 g m-2 of N. Elevated pCO2 appeared to result in an increased (27%) output of N2O, thought to be the consequence of enhanced root-derived available soil C, acting as an energy source for denitrification. The climate, agricultural practices and soils at the FACE experiment combined to give rise to some of the largest N2O emissions recorded for any terrestrial ecosystem. The amount of CO2–C being lost from the control plot was higher (10%) than for the enhanced CO2 plot, and is the reverse of that predicted. The control plot oxidised consistently more CH4 than the enhanced plot, oxidising 25.5 ± 0.8 µg m-2 hr-1 of CH4 for the control plot, with an average of 8.5 ± 0.4 µg m-2 hr-1 of CH4 for the enhanced CO2 plot. This suggests that elevated pCO2 may lead to a feedback whereby less CH4 is removed from the atmosphere. Despite the limited nature of the current study (in time and space), the observations made here on the interactions of elevated pCO2 and soil trace gas release suggest that significant interactions are occurring. The feedbacks involved could have importance at the global scale.  相似文献   

10.
Biomass from short‐rotation coppice (SRC) of woody perennials is being increasingly used as a bioenergy source to replace fossil fuels, but accurate assessments of the long‐term greenhouse gas (GHG) balance of SRC are lacking. To evaluate its mitigation potential, we monitored the GHG balance of a poplar (Populus) SRC in Flanders, Belgium, over 7 years comprising three rotations (i.e., two 2 year rotations and one 3 year rotation). In the beginning—that is, during the establishment year and during each year immediately following coppicing—the SRC plantation was a net source of GHGs. Later on—that is, during each second or third year after coppicing—the site shifted to a net sink. From the sixth year onward, there was a net cumulative GHG uptake reaching ?35.8 Mg CO2 eq/ha during the seventh year. Over the three rotations, the total CO2 uptake was ?51.2 Mg CO2/ha, while the emissions of CH4 and N2O amounted to 8.9 and 6.5 Mg CO2 eq/ha, respectively. As the site was non‐fertilized, non‐irrigated, and only occasionally flooded, CO2 fluxes dominated the GHG budget. Soil disturbance after land conversion and after coppicing were the main drivers for CO2 losses. One single N2O pulse shortly after SRC establishment contributed significantly to the N2O release. The results prove the potential of SRC biomass plantations to reduce GHG emissions and demonstrate that, for the poplar plantation under study, the high CO2 uptake outweighs the emissions of non‐CO2 greenhouse gases.  相似文献   

11.
Rapid, precise, and globally comparable methods for monitoring greenhouse gas (GHG) fluxes are required for accurate GHG inventories from different cropping systems and management practices. Manual gas sampling followed by gas chromatography (GC) is widely used for measuring GHG fluxes in agricultural fields, but is laborious and time‐consuming. The photo‐acoustic infrared gas monitoring system (PAS) with on‐line gas sampling is an attractive option, although it has not been evaluated for measuring GHG fluxes in cereals in general and rice in particular. We compared N2O, CO2, and CH4 fluxes measured by GC and PAS from agricultural fields under the rice–wheat and maize–wheat systems during the wheat (winter), and maize/rice (monsoon) seasons in Haryana, India. All the PAS readings were corrected for baseline drifts over time and PAS‐CH4 (PCH4) readings in flooded rice were corrected for water vapor interferences. The PCH4 readings in ambient air increased by 2.3 ppm for every 1000 mg cm?3 increase in water vapor. The daily CO2, N2O, and CH4 fluxes measured by GC and PAS from the same chamber were not different in 93–98% of all the measurements made but the PAS exhibited greater precision for estimates of CO2 and N2O fluxes in wheat and maize, and lower precision for CH4 flux in rice, than GC. The seasonal GC‐ and PAS‐N2O (PN2O) fluxes in wheat and maize were not different but the PAS‐CO2 (PCO2) flux in wheat was 14–39% higher than that of GC. In flooded rice, the seasonal PCH4 and PN2O fluxes across N levels were higher than those of GC‐CH4 and GC‐N2O fluxes by about 2‐ and 4fold, respectively. The PAS (i) proved to be a suitable alternative to GC for N2O and CO2 flux measurements in wheat, and (ii) showed potential for obtaining accurate measurements of CH4 fluxes in flooded rice after making correction for changes in humidity.  相似文献   

12.
SUMMARY 1. The effects of increasing CO2 and nitrogen loading and of a change in water table and temperature on littoral CH4, N2O and CO2 fluxes were studied in a glasshouse experiment with intact sediment cores including vegetation (mainly sedges), taken from a boreal eutrophic lake in Finland. Sediments with the water table held at a level of 0 or at ?15 cm were incubated in an atmosphere of 360 or 720 p.p.m. CO2 for 18 weeks. The experiment included fertilisation with NO3 and NH4+ (to a total 3 g N m?2). 2. Changes in the water table and temperature strongly regulated sediment CH4 and cCO2 fluxes (community CO2 release), but did not affect N2O emissions. Increase in the water table increased CH4 emissions but reduced cCO2 release, while increase in temperature increased emissions of both CO2 and CH4. 3. The raised CO2 increased carbon turnover in the sediments, such that cCO2 release was increased by 16–26%. However, CH4 fluxes were not significantly affected by raised CO2, although CH4 production potential (at 22 °C) of the sediments incubated at high CO2 was increased. In the boreal region, littoral CH4 production is more likely to be limited by temperature than by the availability of carbon. Raised CO2 did not affect N2O production by denitrification, indicating that this process was not carbon limited. 4. A low availability of NO3 did severely limit N2O production. The NO3 addition caused up to a 100‐fold increase in the fluxes of N2O. The NH4+ addition did not increase N2O fluxes, indicating low nitrification capacity in the sediments.  相似文献   

13.
Measurements of N2O emission fluxes from a 3 ha field of winter wheat were measured using eddy covariance and relaxed eddy accumulation continuously over 10 days during April 1994. The measurements averaged fluxes over approximately 105 m2 of the field, which was fertilised with NH4NO3 at a rate of 43 kg N ha-1 at the beginning of the measurements. The emission fluxes became detectable after the first heavy rainfall, which occured 4 days after fertiliser application. Emissions of N2O increased rapidly during the day following the rain to a maximum of 280 ng N m-2s-1 and declined over the following week. During the period of significant emission fluxes, a clear diurnal cycle in N2O emission was observed, with the daytime maximum coinciding with the soil temperature maximum at 12 cm depth. The temperature dependence of the N2O emission was equivalent to an activation energy for N2O production of 108 kJ mol-1. The N2O fluxes measured using relaxed eddy accumulation, averaged over 30 to 270 min, were in agreement with those of the eddy covariance system within 60%. The total emission of N2O over the period of continuous measurement (10 days) was equivalent to about 10 kg N2O-N, or 0.77% of the N fertiliser applied.  相似文献   

14.
Temporal trends of N2O fluxes across the soil–atmosphere interface were determined using continuous flux chamber measurements over an entire growing season of a subsurface aerating macrophyte (Phalaris arundinacea) in a nonmanaged Danish wetland. Observed N2O fluxes were linked to changes in subsurface N2O and O2 concentrations, water level (WL), light intensity as well as mineral‐N availability. Weekly concentration profiles showed that seasonal variations in N2O concentrations were directly linked to the position of the WL and O2 availability at the capillary fringe above the WL. N2O flux measurements showed surprisingly high temporal variability with marked changes in fluxes and shifts in flux directions from net source to net sink within hours associated with changing light conditions. Systematic diurnal shifts between net N2O emission during day time and deposition during night time were observed when max subsurface N2O concentrations were located below the root zone. Correlation (P < 0.001) between diurnal variations in O2 concentrations and incoming photosynthetically active radiation highlighted the importance of plant‐driven subsoil aeration of the root zone and the associated controls on coupled nitrification/denitrification. Therefore, P. arundinacea played an important role in facilitating N2O transport from the root zone to the atmosphere, and exclusion of the aboveground biomass in flux chamber measurements may lead to significant underestimations on net ecosystem N2O emissions. Complex interactions between seasonal changes in O2 and mineral‐N availability following near‐surface WL fluctuations in combination with plant‐mediated gas transport by P. arundinacea controlled the subsurface N2O concentrations and gas transport mechanisms responsible for N2O fluxes across the soil–atmosphere interface. Results demonstrate the necessity for addressing this high temporal variability and potential plant transport of N2O in future studies of net N2O exchange across the soil–atmosphere interface.  相似文献   

15.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

16.
Intermittent drainage of rice fields isdiscussed as an option to mitigate emission ofCH4, an important greenhouse gas. HoweverN2O, a potentially more effective greenhouse gas,may be emitted during the aeration phase. Therefore,the metabolism of NO, N2O, NH ,NO and NO and the kinetics ofCH4 oxidation were measured after aeration ofmethanogenic rice field soil. Before aeration, thesoil contained NH in relatively highconcentrations (about 4 mM), while NO andNO were almost undetectable. Immediatelyafter aeration both NO and N2O were produced withrates of about 15 pmol h-1 gdw-1 and 5 pmolh-1 gdw-1, respectively. Simultaneously,NH decreased while NO accumulated. Later on, NO was depletedwhile NO concentrations increased.Characteristic phases of nitrogen turnover wereassociated with the activities of ammonium oxidizers,nitrite oxidizers and denitrifiers. Oxidation ofNH and production of NO and N2O wereinhibited by 10 Pa acetylene demonstrating thatnitrification was obligatory for the initiation ofnitrogen turnover and production of NO and N2O.Ammonium oxidation was not limited by the availableNH and thus, concomittant production of NOand N2O was not stimulated by addition ofNH . However, addition of NO stimulated production of NO and N2O in bothanoxic and aerated rice soil slurries. In this case,10 Pa acetylene did not inhibit the production of NOand N2O demonstrating that it was due todenitrification which was obviously limited by theavailability of NO . In the aerated soilslurries CH4 was only oxidized if present atelevated concentrations >50 ppmv CH4). Atatmospheric CH4 concentrations (1.7 ppmv)CH4 was not consumed, but was even slightly produced.CH4 oxidation activity increased afterpreincubation at 20% CH4, and then CH4was also oxidized at atmospheric concentrations. CH4oxidation kinetics exhibited sigmoid characteristicsat low CH4 concentrations presumably because ofinhibition of CH4 oxidation by NH .  相似文献   

17.
韩雪  陈宝明 《应用生态学报》2020,31(11):3906-3914
全球变暖已引起人们的广泛关注,大气温室效应气体浓度增加是导致全球变暖的主要因素之一,土壤是温室效应气体的主要来源。反过来,全球变暖对土壤温室气体的排放具有反馈作用。温度升高不仅会影响植物、动物、微生物的生长及其相互作用,还会影响土壤的物质(尤其是氮、碳)循环过程,从而影响土壤温室效应气体的排放。本文主要总结了增温对土壤主要温室气体N2O和CH4排放的影响及其微生物机制。总体来看,增温能够促进这两种温室气体的排放,其排放主要与温度对氨氧化细菌(AOB)、反硝化功能基因、甲烷产生菌和甲烷氧化菌的丰度和组成的影响有关。土壤温室气体排放也受到植物的物种特性、养分吸收和群落组成,以及土壤营养元素含量、含水量、pH值等理化性质的影响。未来应更深入地从微生物角度探讨全球变暖对土壤温室气体排放的反馈作用机制,加强不同增温模式对土壤温室气体排放的影响研究,并关注增温与其他环境因子相互作用对土壤温室气体排放的影响等,以期为全球变暖对土壤温室气体排放反馈作用的预测提供理论依据。  相似文献   

18.
Simultaneous measurement of N2O and CO2 flux at the soil surface with photoacoustic infrared spectroscopy (PAS) is gaining popularity due to portability, low maintenance, and ease‐of‐operation. However, the ability of PAS to measure N2O with accuracy and precision similar to gas chromatography (GC) is uncertain due to overlap in N2O, CO2, and H2O absorbance spectra combined with the large range in analyte concentrations. We tested the ability of six PAS units to simultaneously measure N2O and CO2 gas concentrations and fluxes with accuracy and precision similar to two GC units. We also evaluated H2O vapor and CO2 interferences with N2O measurement. The accuracy and precision of standard gas concentration measurements with PAS and GC were similar. High water vapor (~26 600 ppm) and CO2 concentrations (~4500 ppm) did not interfere with N2O measurement across the concentration range typically observed in static flux chambers at the soil surface (~0.5–3.0 ppm N2O). On average, N2O fluxes measured with the six PAS were 4.7% higher than one GC and 9.9% lower than the second GC.  相似文献   

19.
Oilseed rape (OSR, Brassica napus L.) is an important feedstock for biodiesel; hence, carbon dioxide (CO2), methane (CH4) and particularly fertilizer‐derived nitrous oxide (N2O) emissions during cultivation must be quantified to assess putative greenhouse gas (GHG) savings, thus creating an urgent and increasing need for such data. Substrates of nitrification [ammonium (NH4)] and denitrification [nitrate (NO3)], the predominant N2O production pathways, were supplied separately and in combination to OSR in a UK field trial aiming to: (i) produce an accurate GHG budget of fertilizer application; (ii) characterize short‐ to medium‐term variation in GHG fluxes; (iii) establish the processes driving N2O emission. Three treatments were applied twice, 1 week apart: ammonium nitrate fertilizer (NH4NO3, 69 kg‐N ha?1) mimicking the farm management, ammonium chloride (NH4Cl, 34.4 kg‐N ha?1) and sodium nitrate (NaNO3, 34.6 kg‐N ha?1). We deployed SkyLine2D for the very first time, a novel automated chamber system to measure CO2, CH4 and N2O fluxes at unprecedented high temporal and spatial resolution from OSR. During 3 weeks following the fertilizer application, CH4 fluxes were negligible, but all treatments were a net sink for CO2 (ca. 100 g CO2 m?2). Cumulative N2O emissions (ca. 120 g CO2‐eq m?2) from NH4NO3 were significantly greater (P < 0.04) than from NaNO3 (ca. 80 g CO2‐eq m?2), but did not differ from NH4Cl (ca. 100 g CO2‐eq m?2) and reduced the carbon sink of photosynthesis so that OSR was a net GHG source in the fertilizer treatment. Diurnal variation in N2O emissions, peaking in the afternoon, was more strongly associated with photosynthetically active radiation (PAR) than temperature. This suggests that the supply of carbon (C) from photosynthate may have been the key driver of the observed diurnal pattern in N2O emission and thus should be considered in future process‐based models of GHG emissions.  相似文献   

20.
Climate change reduces the net sink of CH4 and N2O in a semiarid grassland   总被引:1,自引:0,他引:1  
Atmospheric concentrations of methane (CH4) and nitrous oxide (N2O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2O fluxes in a well‐drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell‐shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2O emission and uptake occurred at our site with some years showing cumulative N2O emission and other years showing cumulative N2O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2O expressed in CO2‐equivalents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号