首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In nature, prey are exposed to multiple predators simultaneously. We examined the effects of the cues of two potential predators, mosquitofish and odonate larvae, individually and in combination on the behavior of green frog (Rana clamitans) tadpoles. In addition to examining the behavioral response of green frog tadpoles to multiple predators, we examined variation in behavior among tadpoles from different egg masses (i.e. different sibships). Sibships differed in activity level and there was a significant predator cue by sibship interaction. Two sibships were relatively more active in the control and odonate predator cue treatments but showed reduced activity in treatments containing mosquitofish cues, whereas the remaining sibships showed consistently low levels of activity in all predator cue treatments, including the control. The use of the vegetated side of the aquarium did not differ between tadpoles exposed to the different predator cues. Sibship had no effect on tadpoles’ use of the vegetated side of the aquarium, and there was no interaction between sibship and predator cue. Our results suggest that green frogs did not respond to simultaneous exposure to multiple predator cues any differently than they did to exposure to individual predator cues. More importantly, our results suggest variation, possibly genetically based, in behavioral responses of tadpoles to predators, and thus selection on these behaviors is possible. Of particular interest is that there was variation in behavioral responses to a non‐native predator (Gambusia affinis), suggesting an evolutionary response to an invasive predator is possible.  相似文献   

2.
Predators unintentionally release chemical and other cues into their environment that can be used by prey to assess predator presence. Prey organisms can therefore perform specific antipredator behavior to reduce predation risk, which can strongly shape the outcome of trophic interactions. In contrast to aquatic systems, studies on cue‐driven antipredator behavior in terrestrial arthropods cover only few species to date. Here, we investigated occurrence and strength of antipredator behavior of the wood cricket Nemobius sylvestris toward cues of 14 syntopic spider species that are potential predators of wood crickets. We used two different behavioral arena experiments to investigate the influence of predator cues on wood cricket mobility. We further tested whether changes in wood cricket mobility can be explained by five predator‐specific traits: hunting mode, commonness, diurnal activity, predator–prey body–size ratio, and predator–prey life stage differences. Crickets were singly recorded (1) in separate arenas, either in presence or absence of spider cues, to analyze changes in mobility on filter paper covered with cues compared with normal mobility on filter paper without cues; and (2) in subdivided arenas partly covered with spider cues, where the crickets could choose between cue‐bearing and cue‐less areas to analyze differences in residence time and mobility when crickets are able to avoid cues. Crickets either increased or reduced their mobility in the presence of spider cues. In the experiments with cues and controls in separate arenas, the magnitude of behavioral change increased significantly with increasing predator–prey body size ratio. When crickets could choose between spider cues and control, their mobility was significantly higher in the presence of cues from common spider species than from rare spiders. We therefore conclude that wood crickets distinguish between cues from different predator species and that spiders unintentionally release a species‐specific composition and size‐dependent quantity of cues, which lead to distinct antipredator behavior in wood crickets.  相似文献   

3.
Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator‐induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free‐ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator‐naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator‐induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.  相似文献   

4.
When confronted by signals of predators presence, many aquatic organisms modify their phenotype (e.g., behaviour or morphology) to reduce their risk of predation. A principal means by which organisms assess predation risk is through chemical cues produced by the predators and/or prey during predation events. Such responses to predation risk can directly affect prey fitness and indirectly affect the fitness of species with which the prey interacts. Accurate assessment of the cue will affect the adaptive nature, and hence evolution, of the phenotypic response. It is therefore, important to understand factors affecting the assessment of chemical cues. Here I examined the effect of the age of chemical cues arising from an invertebrate predator, a larval dragonfly (Anax junius), which was fed bullfrog tadpoles, on the behavioural response (activity level and position) of bullfrog tadpoles. The bullfrog response to chemical cues declined as a function of chemical cue age, indicating the degradation of the chemical cue was on the order of 2–4 days. Further, the decay occurred more rapidly when the chemical cue was placed in pond water rather than well water. These results indicate a limitation of the tadpoles to interpret factors that affect the magnitude of the chemical cue and hence accurately assess predation risk. These findings also have implications for experimental design and the adaptation of phenotypic responses to chemical cues of predation risk.  相似文献   

5.
In many systems, the number of prey killed by predators increases with prey density. This in turn generates higher levels of the indirect signals that prey use to assess predation risk. A model developed by Peacor (2003) showed that prey that respond to predator cues without accounting for conspecific density will consistently over‐ or under‐estimate risk and therefore invest improperly in anti‐predator defense. We tested this model using Rana temporaria tadpoles as prey and Aeshna cyanea dragonfly larvae as predators. As assumed by the model, prey reduced risky activity with increasing concentrations of predator kairomones and increased activity at high prey density. However, prey did not react to changes in cue or density if the ratio of cue‐to‐density remained constant. Prey therefore monitored their per capita risk, strongly supporting Peacor's model.  相似文献   

6.
Animals often alter their behaviour, morphology and physiology in the presence of predators. These induced defences can be fine‐tuned by a variety of environmental factors such as predator species, acute predation risk or food availability. It has, however, remained unclear what cues influence the extent and quality of induced defences and how the information content of these cues interact to determine the development of antipredator defences. We performed an experiment to study the significance of direct chemical cues, originating from the predators themselves, and indirect cues, released by attacked or consumed prey, for phenotypic responses in Rana dalmatina tadpoles. We reared tadpoles in the presence of caged predators (Triturus vulgaris, Aeshna cyanea) fed either one or three tadpoles every other day outside the tadpole‐rearing tanks. Fifteen hours after food provisioning, predators were put back into the tanks containing focal tadpoles either after washing (direct + digestion‐released cues) or with the water containing remnants of the prey (direct + all types of indirect cues). Our results suggest that direct cues together with digestion‐released cues can be sufficient to induce strong antipredator responses. Induced defences depended on both direct cues, affecting predator‐specific responses, and the quantity of indirect cues, resulting in graded responses to differences in predation threat. Moreover, direct and indirect cues interacted in behaviour, resulting in predator‐specific graded responses. We also observed a decrease in the extent of predator‐induced responses in large tadpoles as compared to small ones. Our results, thus, suggest that prey integrate multiple cues about predators to optimize induced defences and that this process changes during ontogeny.  相似文献   

7.
8.
LaFiandra EM  Babbitt KJ 《Oecologia》2004,138(3):350-359
Predator-induced defenses can result from non-contact cues associated with the presence of a feeding predator; however, the nature of the predator cue has not been determined. We tested the role of two non-contact cues, metabolites of digestion of conspecific prey released by the predator and alarm pheromones released by attacked conspecific prey, in the development of inducible defenses by exposing pinewoods tree frog (Hyla femoralis) tadpoles to non-lethal dragonfly (Anax junius) larvae fed either inside experimental bins or removed from the bins for feeding to eliminate alarm pheromones. The costs associated with the development of the induced morphology were also investigated by providing the tadpoles with two food levels intended to provide adequate or growth limiting resources. The generalized morphological response of H. femoralis tadpoles to predators included the development of bodies and tails that were both deeper and shorter, smaller overall body size, and increased orange tail fin coloration and black tail outline. Metabolites of digestion were sufficient to initiate development of inducible defenses; however, the combination of metabolites and alarm cue resulted in a greater response. Furthermore, growth and development were slowed in tadpoles that expressed the induced morphology; however, this growth cost was insufficient to preclude the development of the induced morphology when food resources were low. These results indicate that two aspects of the indirect predator cue work together to trigger a morphological anti-predator response.  相似文献   

9.
The ability of prey to recognize and adequately respond to predators determines their survival. Predator‐borne, post‐digestion dietary cues represent essential information for prey about the identity and the level of risk posed by predators. The phylogenetic relatedness hypothesis posits that prey should respond strongly to dietary cues from closely related heterospecifics but respond weakly to such cues from distantly related prey, following a hierarchical pattern. While such responses have mostly been observed in prey at their first encounter with predators, whether prey maintain such hierarchical levels of investment through time remains unclear. We investigated this question by exposing Rhacophorus arboreus tadpoles to the non‐consumptive effect of gape‐limited newt predators Cynops pyrrhogaster that were fed one of five prey diets across a gradient of phylogenetic relatedness: frog tadpoles (Rhacophorus arboreus, Rhacophorus schlegelii, Pelophylax nigromaculatus, and Hyla japonica) and medaka fish (Oryzias latipes). Predators’ diet, time, and their interaction significantly influenced tadpole activity level. We found support for the phylogenetic relatedness hypothesis: Investments in defense were stronger to cues from tadpole diets than to cues from fish diet. However, such a hierarchical response was recorded only in the first four days following predator exposure, then gradually disappear by day 8 on which the tadpoles exhibited similar activity level across all predator treatments. The findings suggest that, at least under the threat of gape‐limited predators, prey use phylogenetic information to evaluate risk and appropriately invest in defense during early encounters with predators; however, energy requirements may prevent prey from maintaining a high level of defense over long exposure to predation risk.  相似文献   

10.
Tadpoles of Sphaerotheca breviceps raised in the laboratory from the egg stage, and hence lacking prior experience of a predator or its odors, were tested to examine their responses to a predator’s (tadpoles of Hoplobatrachus tigerinus) water-borne chemical cues. The stimulus solution was obtained following 24 h of rearing tadpoles of H. tigerinus (one tadpole per 200 mL water) that were not fed during this period. Upon exposure to the stimulus solution the activity of S. breviceps tadpoles decreased by about 90% within 5 min. Their resting period increased significantly over baseline activity, whereas the swimming period, distance traversed, and swimming spurts declined. However, whenever a test tadpole moved, its swimming velocity was high in response to stimulus solution. The antipredatory responses declined with increase in time of storage of the stimulus solution, indicating decay of the predator’s chemical cues. The findings suggest that (1) antipredator defense strategies of S. breviceps do not require prior experience of predators, (2) the predator’s chemical cues are labile in nature, and (3) the response of prey tadpoles to such cues is similar to reported behavior of anuran tadpoles in response to real predators and alarm cues.  相似文献   

11.
In many size‐dependent predator–prey systems, hatching phenology strongly affects predator–prey interaction outcomes. Early‐hatched predators can easily consume prey when they first interact because they encounter smaller prey. However, this process by itself may be insufficient to explain all predator–prey interaction outcomes over the whole interaction period because the predator–prey size balance changes dynamically throughout their ontogeny. We hypothesized that hatching phenology influences predator–prey interactions via a feedback mechanism between the predator–prey size balance and prey consumption by predators. We experimentally tested this hypothesis in an amphibian predator–prey model system. Frog tadpoles Rana pirica were exposed to a predatory salamander larva Hynobius retardatus that had hatched 5, 12, 19 or 26 days after the frog tadpoles hatched. We investigated how the salamander hatch timing affected the dynamics of prey mortality, size changes of both predator and prey, and their subsequent life history (larval period and size at metamorphosis). The predator–prey size balance favoured earlier hatched salamanders, which just after hatching could successfully consume more frog tadpoles than later hatched salamanders. The early‐hatched salamanders grew rapidly and their accelerated growth enabled them to maintain the predator‐superior size balance; thus, they continued to exert strong predation pressure on the frog tadpoles in the subsequent period. Furthermore, frog tadpoles exposed to the early‐hatched salamanders were larger at metamorphosis and had a longer larval period than other frog tadpoles. These results suggest that feedback between the predator‐superior size balance and prey consumption is a critical mechanism that strongly affects the impacts of early hatching of predators in the short‐term population dynamics and life history of the prey. Because consumption of large nutrient‐rich prey items supports the growth of predators, a similar feedback mechanism may be common and have strong impacts on phenological shifts in size‐dependent trophic relationships.  相似文献   

12.
Red swamp crayfish Procambarus clarkii, a widespread invasive alien crayfish, represents a serious threat for several freshwater species, including amphibians, which are declining at a global scale. As a shared coevolutionary history is the main factor determining the emergence of antipredator responses, Anuran tadpoles may not be able to cope effectively with this introduced predator. We performed two experiments to assess agile frog's (Rana dalmatina) defensive responses to both P. clarkii and native dragonfly larvae (Anax imperator). First, we conditioned embryos (collected from two ponds 30 km away from each other) with predators’ chemical cues to explore possible variation in hatching time caused by predation risk. In the second experiment, to evaluate how predators’ diet affects tadpole behavior, we conditioned tadpoles for a 5‐week period with cues from tadpole‐fed and gammarid‐fed predators and recorded behavioral and morphological responses. Embryos did not alter hatching time in the presence of any predator cue, while tadpoles from both populations strongly reduced activity and visibility when raised in the presence of tadpole‐fed dragonfly larvae. Morphological changes were less straightforward and were induced only in one population, for which broader tails and a slight increase in body size of tadpoles exposed to tadpole‐fed predators were observed. The lack of defensive responses in crayfish‐exposed tadpoles suggests that the spreading of this invasive species in agricultural lowlands of northern Italy may represent a further threat to their conservation.  相似文献   

13.
Many species alter their activity, microhabitat use, morphology and life history in response to predators. Predation risk is related to predator size and palatability of prey among others factors. We analyzed the predation risk of three species of tadpoles that occur in norwestern Patagonia, Argentina: Pleurodema thaul, Pleurodema bufoninum and Rhinella spinulosa. We sampled aquatic insect predators in 18 ponds to determine predator–tadpole assemblage in the study area. In laboratory conditions, we analysed the predation rate imposed by each predator on each tadpole species at different tadpole sizes. Finally, we tested whether tadpoles alter their activity in the presence of chemical and visual cues from predators. Small P. thaul and P. bufoninum tadpoles were the most vulnerable prey species, while small R. spinulosa tadpoles were only consumed by water bugs. Dragonflies and water bugs were the most dangerous tadpole predators. Small P. thaul tadpoles reduced their activity when they were exposed to all predators, while large tadpoles only reduced the activity in the presence of large predators (dragonfly larvae and water bugs). Small P. bufoninum tadpoles reduced the activity when they were exposed to beetle larvae and dragonfly larvae, while large tadpoles only reduced activity when they were exposed to larger predators (water bugs and dragonfly larvae). R. spinulosa tadpoles were the less sensitive to presence of predators, only larger tadpoles responded significantly to dragonfly larvae by reducing their activity. We conclude that behavioural responses of these anuran species were predator-specific and related to the risk imposed by each predator.  相似文献   

14.
The behavioural response of Tetranychus urticae to chemical cues from specialist predatory mites, Phytoseiulus persimilis, or generalist predatory bugs, Orius majusculus, on either bean or strawberry was studied in experimental arenas. Predators were placed on the leaf disc for 24 h and removed before T. urticae females were introduced. After 24 h, prey fecundity (number of eggs laid) and dispersal (number of prey drowned in the water barrier) were assessed. Chemical cues from the specialist predator resulted in reduced prey fecundity, significantly different from the generalist predator and control treatments. No interaction effect was found between plant species and prey fecundity, while significantly more eggs were laid on bean than on strawberry. Predator cues irrespective of predator specialization resulted in more prey dispersal than in the control. Findings emphasize the importance of specialization in the predator species complex for the degree and type of antipredator responses and resulting biological control.  相似文献   

15.
Anti‐predator behavior can alter the dynamics of prey populations, but little is known about the rate at which anti‐predator behavior is lost from prey populations following predator removal. The Channel Islands differ in whether they have historically contained a top predator, the Island Fox (Urocyon littoralis), in evolutionary time (approximately 6200–10 000 yr). On a historically fox‐containing island and two historically fox‐free islands in 2007, I deployed live traps that contained olfactory cues of fox predators (fox feces), olfactory cues of an herbivore (horse feces) or a no‐feces control. Due to a captive breeding program, foxes on the historically fox‐containing island were effectively removed from 1998 to 2004. Rodents from one of the historically fox‐free islands did not respond to fox cues, whereas rodents on the historically fox‐containing island were more likely to be captured in a control trap and less likely to be captured in a fox‐cue trap. Results from the other historically fox‐free island that experienced a recent population bottleneck and period of captive rearing exhibited a preference for horse‐scented traps. These results suggest that, on islands where foxes are the primary predators, anti‐predator behavior in response to olfactory cues is not likely to be rapidly lost by short‐term removals of foxes, although the nature of anti‐predator behavior may depend upon founder events and recent population dynamics (e.g. population bottlenecks or several generations in captivity).  相似文献   

16.
Predation threat-associated behavioral response was studied in Rana temporalis tadpoles to discover the importance of predators’ visual and chemical cues (kairomones and diet-derived metabolites of consumed prey) in evoking antipredator behavior. The caged predators (dragonfly larvae) fed on prey tadpoles or insects (Notonecta spp.) and water conditioned with the predators provided the threat stimuli to the tadpole prey. The predators’ visual cues were ineffective in evoking antipredator behaviors in the tadpole prey. However, exposure to caged tadpole-fed predators or water conditioned with tadpole-fed predators elicited predator avoidance behavior in the tadpoles; they stayed away from the predators, significantly reduced swimming activity (swimming time and distance traveled), and increased burst speed. Interestingly, exposure to water conditioned with starved predators did not elicit any antipredator behavior in the prey. Further, the antipredator responses of predator-experienced tadpoles were significantly greater than those exhibited by predator-na?ve tadpoles. The study shows that R. temporalis tadpoles assess predation threat based exclusively on chemical cues emanating from the predators’ dietary metabolites and that the inclusion of conspecific prey items in the diet of the predators is perceived as a threat. The study also shows that antipredator behavior in these tadpoles is innate and is enhanced during subsequent encounters with the predators.  相似文献   

17.
Individual organisms vary in personality, and the ecological consequences of that variation can affect the strength of predator–prey interactions. Prey with bolder tendencies can mitigate the strength of species interactions by altering growth and initiating ontogenetic niche shifts (ONS). While the link between personality and growth has been established, recent research has highlighted the important interplay between ONS and predator cues in community ecology. The objective of this study was to evaluate the effects of prey personality and predator cues on prey growth and ONS. We predicted growth–mortality trade-offs among personalities with higher survival, larger size, and accelerated ONS for bold individuals in comparison with shy individuals. To evaluate this objective, we conducted behavioral assays and a mesocosm experiment to test how southern leopard frog (Rana sphenocephala) tadpole personality and predatory fish (bluegill, Lepomis macrochirus) cues affects tadpole growth and metamorphosis. On average, bold tadpoles had higher mortality across all treatments in comparison with shy tadpoles. The effects of fish cues were dependent on tadpole personality with shy tadpoles metamorphosing significantly later than bold tadpoles. Bold tadpoles were larger than shy tadpoles at metamorphosis; however, that pattern reversed with fish cues as shy individuals metamorphosed larger than bold individuals. Our results suggest personality may be useful for predicting growth and life history for some prey species with predators. Specifically, the threat of predation can interact with personality to incur a benefit (earlier ONS) while also incurring a cost (size at metamorphosis). Hence by incorporating predator cues with personality, ecologists will be able to elucidate growth–mortality trade-offs mediated by personality.  相似文献   

18.
Non‐consumptive predator effects may have dramatic consequences for host–parasite interactions by influencing the ability of prey items to avoid, resist, or tolerate infection. Both predators and parasites can affect host traits, such as growth rates and behavior, and these effects may in part be mediated through shared physiological pathways (e.g. the glucocorticoid stress hormone, corticosterone [CORT]). Here, we examined the effects of trematode parasites (Digena: Echinostomatidae) and predator (larval odonate) exposure on larvae of two amphibian species (Rana sylvatica and R. clamitans) in laboratory experiments. First, we measured behavior and CORT responses of tadpoles exposed to predator chemical cue in combination with parasite cue or under direct exposure to parasites. We then measured the combined effects of predator cue and parasite infection on survival and traits. Evidence for effects of parasite cue in our study was equivocal, but we found novel interactive effects of parasites and predators on larval frogs. Parasites and predators had antagonistic effects on CORT, behavior, and morphology, and negative synergistic effects on development. In addition, parasite infection and predator cues additively reduced activity levels of both species and growth in wood frogs. Negative effects of parasite infection on survival and traits were dose‐dependent for both species, although wood frogs generally experienced stronger effects of infection than green frogs. Our results emphasize the importance of considering effects of parasites as well as predators, since both can have strong effects on survival and the combination can have both additive and non‐additive effects on key traits. These effects likely have important implications for amphibian population dynamics, community structure, and conservation.  相似文献   

19.
20.
Omnivorous arthropods make dietary choices according to the environment in which they forage, mainly availability/quality of plant and/or prey resources. Such decisions and their subsequent impacts on life‐history traits may be affected by the availability of nutrients and water to plants, that is, through bottom‐up forces. By setting up arenas for feeding behavior observation as well as glasshouse cages for plant preference assessment, we studied effects of the presence of prey (Lepidoptera eggs) and nitrogen/water availability to host tomato plants on the foraging behavior and life‐history traits in the omnivorous predator Macrolophus pygmaeus (Heteroptera: Miridae). In the absence of prey, the predator fed equally on the plants treated with various levels of nitrogen and water. In the presence of prey, however, the feeding rate on plants decreased when the plant received low water input. The feeding rate on prey was positively correlated with feeding rate on plants; that is, prey feeding increased with plant feeding when the plants received high water input. Moreover, plants receiving high water input attracted more M. pygmaeus adults compared with those receiving low water input. For M. pygmaeus fitness, the presence of prey enhanced its fertility and longevity, but the longevity decreased when plants received low compared with high water input. In conclusion, the omnivorous predator may be obliged to feed on plants to obtain water, and plant water status may be a limiting factor for the foraging behavior and fitness of the omnivorous predator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号