首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Chen  Kai  Liu  Qing  Chen  Zi-Hong  Li  Zu-Lei 《Plant Ecology》2020,221(10):979-988

Understanding the geographic patterns of reproductive allocation helps in clarifying the selective forces that shape the reproductive strategies of plants. However, studies on the elevational patterns of reproductive allocation remain limited. Moreover, although soil attributes have long been suspected to drive elevational patterns of reproductive allocation, few studies have explored this relationship. Delaying reproduction and allocating a high proportion of biomass to vegetative organs may be risky for plants living under high-elevation habitats, as these two processes can potentially lead to plant reproductive failure due to the low temperatures and short growing seasons at high elevations. Thus, we hypothesize that reproductive effort will increase with elevation and the elevational pattern of reproductive allocation will be largely driven by soil attributes, given their covariation with elevation. To test these hypotheses, we determined the vegetative and reproductive biomass of individual Impatiens arguta (Balsaminaceae) plants across 12 populations in the Gaoligong Mountains (China), and collected data on soil temperature, nutrients, moisture, and pH for each population. Based on standard major axis regression and linear regression models, we found that (1) both vegetative and reproductive biomass decreased with elevation; (2) all populations demonstrated significant allometric slopes (i.e., linear coefficients of log[reproductive biomass]???log[vegetative biomass] regressions)?>?1; (3) allometric slopes decreased with elevation; and (4) soil temperature was a better predictor of the allometric slope than elevation, i.e., the allometric slope decreased with soil temperature. These results suggest that plant species growing at high elevation invest proportionately more resources to reproduction as an adaptation to low-temperature environments, and reproductive output is heavily dependent on vegetative growth. This study provides the first evidence of soil temperature driving reproductive allocation patterns, which suggests that plant species will favor allocation to growth under increasing soil temperatures with climate warming.

  相似文献   

2.
To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high‐elevation populations developed cold hardiness earlier than low‐elevation populations, representing significant genetic control. Because development occurred earlier at high‐elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade‐off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high‐elevation population. These thermal responses may be one of the important factors driving the elevation‐dependent adaptation of A. sachalinensis.  相似文献   

3.

Background

Environmental gradients caused by altitudinal gradients may affect genetic variation within and among plant populations and inbreeding within populations. Populations in the upper range periphery of a species may be important source populations for range shifts to higher altitude in response to climate change. In this study we investigate patterns of population genetic variation at upper peripheral and lower more central altitudes in three common plant species of semi-dry grasslands in montane landscapes.

Methodology/Principal Findings

In Briza media, Trifolium montanum and Ranunculus bulbosus genetic diversity, inbreeding and genetic relatedness of individuals within populations and genetic differentiation among populations was characterized using AFLP markers. Populations were sampled in the Swiss Alps at 1800 (upper periphery of the study organisms) and at 1200 m a.s.l. Genetic diversity was not affected by altitude and only in B. media inbreeding was greater at higher altitudes. Genetic differentiation was slightly greater among populations at higher altitudes in B. media and individuals within populations were more related to each other compared to individuals in lower altitude populations. A similar but less strong pattern of differentiation and relatedness was observed in T. montanum, while in R. bulbosus there was no effect of altitude. Estimations of population size and isolation of populations were similar, both at higher and lower altitudes.

Conclusions/Significance

Our results suggest that altitude does not affect genetic diversity in the grassland species under study. Genetic differentiation of populations increased only slightly at higher elevation, probably due to extensive (historic) gene flow among altitudes. Potentially pre-adapted genes might therefore spread easily across altitudes. Our study indicates that populations at the upper periphery are not genetically depauperate or isolated and thus may be important source populations for migration under climate change.  相似文献   

4.

Background and Aims

Genetic connectivity between plant populations allows for exchange and dispersal of adaptive genes, which can facilitate plant population persistence particularly in rapidly changing environments.

Methods

Patterns of historic gene flow, flowering phenology and contemporary pollen flow were investigated in two common herbs, Ranunculus bulbosus and Trifolium montanum, along an altitudinal gradient of 1200–1800 m a.s.l. over a distance of 1 km among five alpine meadows in Switzerland.

Key Results

Historic gene flow was extensive, as revealed by Fst values of 0·01 and 0·007 in R. bulbosus and T. montanum, respectively, by similar levels of allelic richness among meadows and by the grouping of all individuals into one genetic cluster. Our data suggest contemporary pollen flow is not limited across altitudes in either species but is more pronounced in T. montanum, as indicated by the differential decay of among-sibships correlated paternity with increasing spatial distance. Flowering phenology among meadows was not a barrier to pollen flow in T. montanum, as the large overlap between meadow pairs was consistent with the extensive pollen flow. The smaller flowering overlap among R. bulbosus meadows might explain the slightly more limited pollen flow detected.

Conclusions

High levels of pollen flow among altitudes in both R. bulbosus and T. montanum should facilitate exchange of genes which may enhance adaptive responses to rapid climate change.  相似文献   

5.
Pollen flow is a key biological process that connects plant populations, preventing genetic impoverishment and inbreeding. Pollen‐mediated long‐distance dispersal (LDD) events are especially important for plant species in increasingly fragmented landscapes. Patterns of pollen dispersal were directly estimated and dispersal kernels modelled in an experimental population of Ranunculus bulbosus and Trifolium montanum to determine the potential for LDD. Eight and 11 microsatellite markers were used for R. bulbosus and T. montanum, respectively, to run a likelihood‐based paternity analysis on randomly chosen offspring (Ntotal = 180 per species) from five maternal plants. High rates of selfing were found in R. bulbosus (average 45.7%), while no selfing was observed in T. montanum. The majority (60%) of mating events occurred at very short distances: the median of the observed dispersal distances was 0.8 m in both species, and the average distances were 15.9 and 10.3 m in R. bulbosus and T. montanum, respectively. Modelling the pollen dispersal kernel with four different distribution functions (exponential‐power, geometric, 2Dt and Weibull) indicated that the best fit for both species was given by a Weibull function. Yet, the tail of the T. montanum pollen dispersal kernel was thinner than in R. bulbosus, suggesting that the probability for LDD is higher in the latter species. Even though the majority of pollen dispersal occurred across short distances, the detection of several mating events up to 362 m (R. bulbosus) and 324 m (T. montanum) suggests that pollen flow may be sufficient to ensure population connectivity in these herb species across fragmented grasslands in Swiss agricultural landscapes.  相似文献   

6.
Seasonal resource availability may act as a constraint on plant phenology and thereby influence the range of growth responses observed among populations of annual species, especially those occupying a wide range of environments. We compared a mesic and a xeric population of the non-native, annual grass, Bromus tectorum, to examine phenology in response to interspecific competition and water availability. Using a target-neighborhood approach, we assessed how phenological patterns of the two populations affected morphological and growth responses to enhanced resource availability represented by late-season soil moisture. The xeric population exhibited a highly constrained phenology and was unable to extend the growing season despite available soil resources. Because of the low phenotypic variation, allocation to reproduction was similar across resource conditions. In contrast, the mesic population flowered later and showed a more opportunistic phenology in response to late-season water availability. The mesic population was not able to maintain consistent reproductive allocation at low resource levels. The responses of the two populations to late-season water availability were not affected by the density of neighboring plants. We suggest that post-introduction selection pressure on B. tectorum in the xeric habitat has resulted in a more fixed phenology which limits opportunistic response to unpredictable, particularly late-season resource availability. Opportunistic and fixed responses represent contrasting strategies for optimizing fitness in temporally varying environments and, while both play important roles for ensuring reproductive success, these results suggest that local adaptation to temporal resource variation may reflect a balance between flexible and inflexible phenology.  相似文献   

7.

Aim

How species respond to ongoing climate change has been a hot research topic, especially with the controversy in shifting range (movement) or persisting in local habitat (in situ) as the primary response. Assessing the relative roles of range shifts, phenotypic plasticity and genetic adaptation helps us predict the evolutionary fate of species. We aim to explore the evolutionary strategies of plants under climate change from a keystone herb in alpine ecosystems, Mirabilis himalaica, along its elevational gradient.

Location

Himalaya-Hengduan Mountains, China.

Methods

We combined evidence from population genomics and ecological data in both space and time to investigate the state of “staying” or “moving”. We identified migration events by assessing historical and contemporary gene flow and changes in species distribution. Morphological variation was compared by measuring five traits using specimen data. Moreover, we explored climate-driven genetic variation and local selection regimes acting on populations in the alpine landscape along an elevational gradient.

Results

Our results argue that staying in situ by morphological variation and local genetic evolution rather than range shifting plays an important role in M. himalaica response to climate change. We first found trace evidence of upward or climatic-driven shifting along an elevational gradient, although asymmetric gene flow was restricted within microenvironments of mid-elevational populations. Furthermore, morphological variation comparisons revealed clinal variation, as resource allocation showed a declining pattern in vegetative growth but increased reproductive growth with increasing elevation. Outlier tests and environment association analyses indicated adaptative loci primarily related to thermal-driven selection and continuous adaptations to high elevation in the Himalaya-Hengduan Mountains.

Main Conclusions

Our findings show M. himalaica may persist in local habitats rather than shifting range under climate change, exhibiting a low risk of genomic vulnerability in current habitats. This study has important implications in improving our understanding of the evolutionary response in alpine plants to climate change.  相似文献   

8.
Body size is a life history trait that determines the reproductive success of a variety of organisms. Changes in body size may have a genetic component when persistent conditions such as season length and climate select for individuals of an optimal body size and an environmental component when it is influenced on an ecological scale by factors such as weather, food availability, or maternal effects. Along elevational gradients that experience seasonality, insects commonly become smaller with increases in elevation. In this study we test the hypothesis that dispersal potential, an indicator of gene flow, impacts the type of size clines exhibited by insects along elevational gradients and that these differences in local adaptation should lead to predictable changes in their reproductive potential and output. Using two short winged grasshopper species, Aeropedellus clavatus and Melanoplus boulderensis, and two long winged species, Camnula pellucida and Melanoplus sanguinipes, we showed that species with low dispersal potential are associated with significant declines in body size with increases in elevation while species with high dispersal potential displayed no size clines. Consistent with short winged species being more locally adapted, we show that reproductive potential, as measured by the proportion of ovarioles that become functional, do not differ among populations of short winged species, but decline with elevation in the long winged species. While our study failed to show that dispersal potential impacts reproductive output in a consistent and predictable manner (as measured by clutch and egg sizes), we address the possibility that clutch size may not reflect changes in total reproductive output and that changes in egg size may be a plastic trait. We concluded that studies exploring the evolution of body size, the reproductive capacity and species level responses to environmental change should note the importance of dispersal potential in influencing these patterns.  相似文献   

9.
Phenological differences in flowering arising along elevational gradients may be caused by either local adaptation or phenotypic plasticity. Local adaptation can lead to reproductive isolation of populations at different elevational zones and thus produce elevational genetic structuring, while phenotypic plasticity does not produce elevational genetic structuring. In this study, we examined the effects of elevation and fragmentation on genetic diversity and structure of Polylepis australis populations, where individuals exhibit phenological differences in flowering along an elevational gradient. We assessed the polymorphism of amplified fragment length polymorphism markers in adults and saplings from one conserved and one fragmented forest covering elevations from 1600 to 2600 m asl. Over 98% of variation was found within populations, and we found very low and similar genetic differentiation along elevational gradients for adults and saplings in both continuous and fragmented forests. In addition, there was no significant relationship between genetic diversity and elevation. Results indicated that phenological differences along elevational gradients are more likely caused by phenotypic plasticity than local adaptation, and fragmentation does not appear to have affected genetic diversity and differentiation in the studied populations. Results therefore imply that if necessary, seeds for reforestation purposes may be collected from different elevations to the seeding or planting sites.  相似文献   

10.
Environmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternatively, climate change could induce maladaptive plasticity, reducing fitness, and potentially stalling adaptation and migration. Here, we quantified plasticity in life history, foliar morphology, and ecophysiology in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In this region, warming winters are reducing snowpack and warming springs are advancing the timing of snow melt. We hypothesized that traits that were historically advantageous in hot and dry, low‐elevation locations will be favored at higher elevation sites due to climate change. To test this hypothesis, we quantified trait variation in natural populations across an elevational gradient. We then estimated plasticity and genetic variation in common gardens at two elevations. Finally, we tested whether climatic manipulations induce plasticity, with the prediction that plants exposed to early snow removal would resemble individuals from lower elevation populations. In natural populations, foliar morphology and ecophysiology varied with elevation in the predicted directions. In the common gardens, trait plasticity was generally concordant with phenotypic clines from the natural populations. Experimental snow removal advanced flowering phenology by 7 days, which is similar in magnitude to flowering time shifts over 2–3 decades of climate change. Therefore, snow manipulations in this system can be used to predict eco‐evolutionary responses to global change. Snow removal also altered foliar morphology, but in unexpected ways. Extensive plasticity could buffer against immediate fitness declines due to changing climates.  相似文献   

11.
Phenological events, such as the initiation and the end of seasonal growth, are thought to be under strong evolutionary control because of their influence on tree fitness. Although numerous studies highlighted genetic differentiation in phenology among populations from contrasting climates, it remains unclear whether local adaptation could restrict phenological plasticity in response to current warming. Seedling populations of seven deciduous tree species from high and low elevations in the Swiss Alps were investigated in eight common gardens located along two elevational gradients from 400 to 1,700 m. We addressed the following questions: are there genetic differentiations in phenology between populations from low and high elevations, and are populations from the upper elevational limit of a species’ distribution able to respond to increasing temperature to the same extent as low-elevation populations? Genetic variation of leaf unfolding date between seedlings from low and high populations was detected in six out of seven tree species. Except for beech, populations from high elevations tended to flush later than populations from low elevations, emphasizing that phenology is likely to be under evolutionary pressure. Furthermore, seedlings from high elevation exhibited lower phenological plasticity to temperature than low-elevation provenances. This difference in phenological plasticity may reflect the opposing selective forces involved (i.e. a trade-off between maximizing growing season length and avoiding frost damages). Nevertheless, environmental effects were much stronger than genetic effects, suggesting a high phenological plasticity to enable tree populations to track ongoing climate change, which includes the risk of tracking unusually warm springs followed by frost.  相似文献   

12.
1. Temporal isolation by cohort splitting is a life‐history mechanism that has been reported in many temperate insects, including those inhabiting freshwater habitats. Although the cohorts seem to maintain separate temporal niches in a specific location, the temporal isolation may be disrupted across a geographic gradient due to constraints imposed by seasonality. 2. This prediction was tested on two temporally isolated populations of the obligatory univoltine Lestes virens (Odonata, Lestidae) in north‐east Algeria. Although the two cohorts emerge at the same time in spring, one cohort reproduces in summer, while the second cohort estivates in summer and reproduces in autumn. A survey assessing the phenology and abundance was conducted on eight ponds across an elevational gradient (5–1012 m asl) using capture–mark–recapture and adult density sampling. 3. In all sites from low to high elevation, the species showed cohort splitting. The phenology of reproduction of both cohorts showed a delay with elevation, but the cline was 2.2 days for the summer cohort and 0.7 days for the autumn cohort per 100 m of elevation. Moreover, the density of adults in the autumn cohort was higher than that of summer cohort across the entire elevational range, and the difference increased with elevation. 4. These findings regarding the differential elevational cline in the phenology show that the temporal isolation of the two cohorts becomes narrower at high elevation, suggesting potential inter‐cohort temporal overlap at higher elevations. 5. The claim that the two cohorts of L. virens are true temporally isolated species needs further investigation.  相似文献   

13.
In order to assess the importance of sexual and asexual reproduction during the life history of Scirpus mariqueter, its reproductive and growth characters were concurrently examined along an elevational gradient (from low elevation to high elevation). The proportions of flowering shoot and inflorescence mass, seed : flower ratio and seed weight were used to quantify the investment in sexual reproduction. The proportions of current-year shoot and rhizome mass were used to quantify the investment in asexual reproduction, and the proportion of corm mass was used for growth, respectively. It was found that vegetative propagation predominated at low elevation, whereas sexual reproduction predominated at high elevation; and that sexual reproduction increased with declining asexual reproduction along the gradient. The results suggest that asexual reproduction is relatively favored in the early life stage, whereas sexual reproduction is favored when the population becomes mature and aged, probably because of the functional differentiation between the two reproductive types. Sexual productive characters (i.e. the proportions of flowering shoot and inflorescence mass) were negatively correlated to both growth and asexual reproductive characters along the gradient, indicating there might exist some trade-offs among growth, sexual and asexual reproduction during the life history. However, no obvious pattern was found between asexual reproductive characters and growth characters along the elevational gradient, possibly because of the varied relationships between them at different life stages. The variations in sexual and asexual reproduction in the species and the relationship between them are thought to be of great significance for local population growth, species persistence and evolution.  相似文献   

14.
Globally, populations of diverse taxa have altered phenology in response to climate change. However, most research has focused on a single population of a given taxon, which may be unrepresentative for comparative analyses, and few long‐term studies of phenology in ectothermic amniotes have been published. We test for climate‐altered phenology using long‐term studies (10–36 years) of nesting behavior in 14 populations representing six genera of freshwater turtles (Chelydra, Chrysemys, Kinosternon, Malaclemys, Sternotherus, and Trachemys). Nesting season initiation occurs earlier in more recent years, with 11 of the populations advancing phenology. The onset of nesting for nearly all populations correlated well with temperatures during the month preceding nesting. Still, certain populations of some species have not advanced phenology as might be expected from global patterns of climate change. This collection of findings suggests a proximate link between local climate and reproduction that is potentially caused by variation in spring emergence from hibernation, ability to process food, and thermoregulatory opportunities prior to nesting. However, even though all species had populations with at least some evidence of phenological advancement, geographic variation in phenology within and among turtle species underscores the critical importance of representative data for accurate comprehensive assessments of the biotic impacts of climate change.  相似文献   

15.
Adaptive responses to past climate change may play an important role in the persistence of high‐mountain plants, which are vulnerable to global warming. Armeria caespitosa is a high‐mountain plant, endemic to the Iberian Central Range. Differences in abiotic environment along the elevational gradient impose two opposing stress gradients (i.e. water stress and duration of the growth season) on the species. Furthermore, the species is found in two interspersed, contrasting microhabitats (rocky outcrops and dry cryophilic grasslands) that have different effects on plants depending of the elevation. As a result of this, the species shows great among‐population variation in many reproductive and vegetative traits. We used a common garden approach to determine whether this phenotypic variation has a genetic basis or is the result of plastic responses shaped by heterogeneous environmental conditions. Plants from the high‐elevation edge and dry cryophilic grasslands flowered earlier and produced more viable fruits but were smaller. These results confirm that among‐population variation in flowering phenology and reproductive performance traits in A. caespitosa is partially genetically based. The results also show that the stronger selection response in favour of early‐flowering individuals in populations at the low‐elevation edge did not correspond with the greater proportion of early‐flowering individuals. Genetic variability associated with flowering onset may be relevant in coping with the impacts of ongoing global warming. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 384–395.  相似文献   

16.
Much of the world's insect and plant biodiversity is found in tropical and subtropical ‘hotspots’, which often include long elevational gradients. These gradients may function as ‘diversity pumps’ and contribute to both regional and local species richness. Climactic conditions on such gradients often change rapidly along short vertical distances and may result in local adaptation and high levels of population genetic structure in plants and insects. We investigated the population genetic structure of two species of Ficus (Moraceae) along a continuously forested elevational gradient in Papua New Guinea. This speciose plant genus is pollinated by tiny, species‐specific and highly coevolved chalcid wasps (Agaonidae) and represented by at least 73 species at our study gradient. We present results from two species of Ficus sampled from six elevations between 200 m and 2700 m a.s.l. (almost the entire elevational range of the genus) and 10 polymorphic microsatellite loci. These results show that strong barriers to gene flow exist between 1200 m and 1700 m a.s.l. Whereas lowland populations are panmictic across distances over 70 km, montane populations can be disjunct over 4 km, despite continuous forest cover. We suggest that the limited gene flow between populations of these two species of montane Ficus may be driven by environmental limitations on pollinator or seed dispersal in combination with local adaptation of Ficus populations. Such a mechanism may have wider implications for plant and pollinator speciation across long and continuously forested elevational gradients if generalist insect pollinators and vertebrate seed dispersers also form populations based on elevation.  相似文献   

17.
The ecological effects of climate change have been shown in most major taxonomic groups; however, the evolutionary consequences are less well‐documented. Adaptation to new climatic conditions offers a potential long‐term mechanism for species to maintain viability in rapidly changing environments, but mammalian examples remain scarce. The American pika (Ochotona princeps) has been impacted by recent climate‐associated extirpations and range‐wide reductions in population sizes, establishing it as a sentinel mammalian species for climate change. To investigate evidence for local adaptation and reconstruct patterns of genomic diversity and gene flow across rapidly changing environments, we used a space‐for‐time design and restriction site‐associated DNA sequencing to genotype American pikas along two steep elevational gradients at 30,966 SNPs and employed independent outlier detection methods that scanned for genotype‐environment associations. We identified 338 outlier SNPs detected by two separate analyses and/or replicated in both transects, several of which were annotated to genes involved in metabolic function and oxygen transport. Additionally, we found evidence of directional gene flow primarily downslope from high‐elevation populations, along with reduced gene flow at outlier loci. If this trend continues, elevational range contractions in American pikas will likely be from local extirpation rather than upward movement of low‐elevation individuals; this, in turn, could limit the potential for adaptation within this landscape. These findings are of particular relevance for future conservation and management of American pikas and other elevationally restricted, thermally sensitive species.  相似文献   

18.
Local adaptation of populations along elevational gradients is well known, but conclusive evidence that such divergence has resulted in the origin of distinct species in parapatry remains lacking. We integrated morphological, vocal, genetic and behavioural data to test predictions pertaining to the hypothesis of parapatric ecological speciation associated with elevation in populations of a tropical montane songbird, the Grey‐breasted Wood‐wren (Henicorhina leucophrys: Troglodytidae), from the Sierra Nevada de Santa Marta, Colombia. We confirmed that two distinct populations exist along the elevational gradient. Phylogenetic analyses tentatively indicate that the two populations are not sister taxa, suggesting they did not differentiate from a single ancestor along the gradient, but rather resulted from separate colonization events. The populations showed marked divergence in morphometrics, vocalizations and genetic variation in mitochondrial and nuclear loci, and little to no evidence of hybridization. Individuals of both populations responded more strongly to their own local songs than to songs from another elevation. Although the two forms do not appear to have differentiated locally in parapatry, morphological and vocal divergence along the elevational gradient is consistent with adaptation, suggesting a possible link between adaptive evolution in morphology and songs and the origin of reproductive isolation via a behavioural barrier to gene flow. The adaptive value of phenotypic differences between populations requires additional study.  相似文献   

19.

Premise of the Study

Climate‐driven changes in phenology are substantially affecting ecological relationships and ecosystem processes. The role of variation among species has received particular attention; for example, variation among species’ phenological responses to climate can disrupt trophic interactions and can influence plant performance. Variation within species in phenological responses to climate, however, has received much less attention, despite its potential role in ecological interactions and local adaptation to climate change.

Methods

We constructed three common gardens across an elevation gradient on Cadillac Mountain in Acadia National Park, Maine, to test population‐level responses in leaf‐out phenology in a reciprocal transplant experiment. The experiment included three native species: low bush blueberry (Vaccinium angustifolium), sheep's laurel (Kalmia angustifolia), and three‐toothed cinquefoil (Sibbaldiopsis tridentata).

Key Results

Evidence for local adaptation of phenological response to temperature varied among the species, but was weak for all three. Rather, variation in phenological response to temperature appeared to be driven by local microclimate at each garden site and year‐to‐year variation in temperature.

Conclusions

Population‐level adaptations in leaf‐out phenology appear to be relatively unimportant for these species in Acadia National Park, perhaps a reflection of strong genetic mixing across elevations, or weak differences in selection on phenological response to spring temperatures at different elevations. These results concur with other observational data in Acadia and highlight the utility of experimental approaches to understand the importance of annual and local site variation in affecting phenology both among and within plant species.  相似文献   

20.
This study examined the flowering phenology and reproductive traits of the Solidago virgaurea complex at four elevations in the subalpine zone in Japan using a bagging experiment. Flowering started earlier at higher elevations. Syrphid flies mainly visited flowers of the S. virgaurea complex, and the number of visits was considerably lower at the lowest elevation than at the three other elevations. Although the number of seeds per individual did not differ among the four elevations, total achene weight per individual was lower at the lowest elevation than at the three other elevations. The weight of an achene and seed germination rate of the control were much greater at higher elevations than at the lowest elevation. The weight of an achene and germination rate for the control were as low as the bagging treatment at the lowest elevation with infrequent flower visitors, which indicates that the S. virgaurea complex is a facultative outcrosser. The S. virgaurea complex is thought to produce seeds during a short growing season at high elevations by starting to flower earlier, and the large seed size is advantageous for seedling establishment at high elevations. Therefore, elevational changes in flowering phenology and reproductive traits are thought to be an adaptation to the short growing season at high elevations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号