首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Genetic lineages evolving during glacial isolation frequently come into contact as the result of postglacial range expansions. Hybridization often occurs along these contact zones. In Europe, the high mountain systems of the Alps and Pyrenees are well known for their hybrid belts. This article studies the contact zone of the Woodland Ringlet Erebia medusa in a Hercynian mountain area in the Czech-German border region not exceeding 1500 m a.s.l. Hybrid populations between an eastern and a western genetic lineage were detected by amova -based tests, principal component analysis and neighbour joining analysis. Over most of the range of the Czech-German Border Mts, the ridges separate the western and the eastern genetic lineage from each other. However, two important hybrid areas were detected: (1) the watershed of the Ohře river in the north-west of that area, a major valley system passing through these mountains and (2) the high plateaux of the Šumava Mts in the south-east, an extended area of high elevation. The location of hybrid populations in geographical vicinity to non-hybrid populations and the generally low F IS (2.1%) make reduced fitness of hybrid individuals little likely. The hybrid populations have intermediate genetic diversity between the genetically poor western and the genetically rich eastern lineage populations.  相似文献   

2.
Phylogeography is often used to investigate the effects of glacial cycles on current genetic structure of various plant and animal species. This approach can also identify the number and location of glacial refugia as well as the recolonization routes from those refugia to the current locations. To identify the location of glacial refugia of the Yellow‐spotted mountain newt, Neurergus derjugini, we employed phylogeography patterns and genetic variability of this species by analyzing partial ND4 sequences (867 bp) of 67 specimens from 15 sampling localities from the whole species range in Iran and Iraq. Phylogenetic trees concordant with haplotype networks showed a clear genetic structure among populations as three groups corresponding to the populations in the north, center, and south. Evolutionary ages of clades north and south ranging from 0.15 to 0.17 Myr, while the oldest clade is the central clade, corresponding to 0.32 Myr. Bayesian skyline plots of population size change through time show a relatively slight increase until about 25 kyr (around the last glacial maximum) and a decline of population size about 2.5 kyr. The presence of geographically structured clades in north, center, and south sections of the species range signifies the disjunct populations that have emerged in three different refugium. This study illustrates the importance of the effect of previous glacial cycles in shaping the genetic structure of mountain species in the Zagros range. These areas are important in terms of long‐term species persistence and therefore valuable areas for conservation of biodiversity.  相似文献   

3.
Glacial and interglacial cycles of the Pleistocene have led to severe range fluctuations of many species. These range shifts of the past often are reflected by extant genetic signatures. Retractions of distribution areas often have fostered splits into several small and isolated retreats as remnants of the formerly interconnected range. These processes often go in line with losses of intraspecific diversity. By contrast, large and interconnected distribution ranges mostly sustain high levels of genetic variability. The genetic impact of both scenarios strongly depends on the temporal scale. In the present study, we tested the genetic effects of an assumed long‐lasting widespread distribution during glacial periods and more short‐term population retractions to mountain archipelagos during warm stages. We analyzed polymorphic allozymes for individuals of the Eastern Large Heath butterfly, Coenonympha rhodopensis, including major parts of its distribution, such as central Italy and the Balkan Peninsula. Our data show extraordinarily high genetic diversity. The only remarkable genetic split is detectable between the central Apennines (Italy) and the Balkan mountain systems. The populations sampled over seven Balkan mountain systems (Jakupica, Shar Planina, Ossogovo, Pirin, Rila, Rhodopes, and Stara Planina) show low genetic differentiation. This low genetic differentiation and high genetic diversity diverges from the genetic structures frequently found in species with disjunct distributions. We therefore hypothesize that the obtained molecular structure is the product of down‐slope shift during the last cold stage and subsequent expansion over the lowlands of the Balkan Peninsula. The current mountain restriction most probably occurred with the beginning of the postglacial warming, which is too short a time span to be of evolutionary relevance. Therefore, the recent high genetic diversities and low differentiation may still reflect long‐lasting glacial panmixia but not (yet) the recent disjunction. The strong genetic differentiation between the Balkans and Italian Apennines must result from an earlier dispersal process, most probably from the Balkans to Italy. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110; , 281–290.  相似文献   

4.
Cold‐adapted species are thought to have had their largest distribution ranges in central Europe during the glacial periods. Postglacial warming caused severe range shifts of such taxa into higher latitudes and altitudes. We selected the boreomontane butterfly Lycaena helle (Denis & Schiffermüller, 1775) as an example to demonstrate the genetic effects of range changes, and to document the recent status of highly fragmented remnant populations. We analysed five polymorphic microsatellite loci in 1059 individuals sampled at 50 different localities scattered over the European distribution area of the species. Genetic differentiation was strong among the mountain ranges of western Europe, but we did not detect similarly distinct genetic groups following a geographical pattern in the more eastern areas. The Fennoscandian populations form a separate genetic group, and provide evidence for a colonization from southern Finland via northern Scandinavia to south‐central Sweden. Species distribution modelling suggests a large extension of the spatial distribution during the last glacial maximum, but highlights strong retractions to a few mountain areas under current conditions. These findings, combined with our genetic data, suggest a more or less continuous distribution of L. helle throughout central Europe at the end of the last ice age. As a consequence of postglacial warming, the species retreated northwards to Fennoscandia and escaped increasing temperatures through altitudinal shifts. Therefore, the species is today restricted to population remnants located at the mountain tops of western Europe, genetically isolated from each other, and evolved into genetically unique entities. Rising temperatures and advancing habitat destruction threaten this wealth of biodiversity. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 155–168.  相似文献   

5.
The genetic diversity and the temporal and spatial genetic population structure of the butterfly Aglais urticae, a highly mobile species, were studied by allozyme electrophoresis. High levels of allozyme diversity were found. Most of the total genetic diversity occurred at the within-population scale rather than at the between-population scale. This variation could not be accounted for by Wright's model of 'isolation by distance'. No significant temporal variation was observed for those populations that were sampled in different years. A process combining high movement rate between neighbouring patches, long-distance migration and rare extinction/recolonization is suggested to explain the observed genetic structure. This hypothesis is favoured over an island model of population structure because migration in A. urticae is uniform neither with distance nor with time.  相似文献   

6.
7.
A phylogeographical analysis of Ranunculus platanifolius, a typical European subalpine tall‐herb species, indicates the existence of two main genetic lineages based on amplified fragment length polymorphism (AFLP) markers. One group comprises populations from the Balkan Peninsula and the south‐eastern Carpathians and the other includes the remaining part of the range of the species, encompassing the western Carpathians, Sudetes, Alps, Pyrenees and Scandinavia. The main phylogeographical break observed in this species runs across the Carpathians and separates the main parts of this range (western and south‐eastern Carpathians), supporting a distinct glacial history of populations in these areas. The high genetic similarity of the Balkan Peninsula and south‐eastern Carpathian populations could indicate a common glacial refugium for these contemporarily isolated areas of species distribution. The western and northern part of the species range displays an additional weak differentiation into regional phylogeographical groups, which could have been shaped by isolation in glacial refugia or even by a postglacial isolation. The observed weak phylogeographical structure could also be linked with ecological requirements, allowing survival along streams in relatively low, forested mountain ranges. © 2013 The Linnean Society of London  相似文献   

8.
Aim Although climatic fluctuations occurred world‐wide during the Pleistocene, the severity of glacial and drought events – and hence their influence on animal and plant biogeography – differed among regions. Many Holarctic species were forced to warmer‐climate refugia during glacial periods, leaving the genetic signature of recent expansion and gene flow among modern‐day populations. Montane south‐eastern Australia experienced less extreme glaciation, but the effects of drier and colder climatic conditions over this period on biotic distributions, and hence on the present‐day genetic structure of animal and plant populations, are poorly known. Location South‐eastern Australia. Methods The endangered Blue Mountains water skink (Eulamprus leuraensis) is a viviparous lizard known from fewer than 40 isolated small swamps at 560–1060 m elevation in south‐eastern Australia. We conducted molecular phylogenetic, dating and population genetics analyses using the mitochondrial NADH dehydrogenase 4 (ND4) of 224 individuals of E. leuraensis sampled across the species’ distribution. Results Ancient divergences in haplotype groups between lizards from the Blue Mountains and the Newnes Plateau, and strong genetic differences, even between swamps separated by only a few kilometres, suggest that the species has persisted as a series of relatively isolated populations within its current distribution for about a million years. Presumably, habitat patches similar to current‐day swamps persisted throughout glacial–interglacial cycles in this region, allowing the development of high levels of genetic structuring within and among present‐day populations. Main conclusions Our results suggest that less extreme glacial conditions occurred in the Southern Hemisphere compared with the Northern Hemisphere, allowing cold‐adapted species (such as E. leuraensis) to persist in montane areas. However, additional studies are needed before we can assemble a comprehensive view of the impact of Pleistocene climatic variation on the phylogeography of Southern Hemisphere taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号