首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contrasting flower color patterns that putatively attract or direct pollinators toward a reward are common among angiosperms. In the deceptive orchid Anacamptis morio, the lower petal, which makes up most of the floral display, has a light central patch with dark markings. Within populations, there is pronounced variation in petal brightness, patch size, amount of dark markings, and contrast between patch and petal margin. We tested whether pollinators mediate selection on these color traits and on morphology (plant height, number of flowers, corolla size, spur length), and whether selection is consistent with facilitated or negative frequency‐dependent pollination. Pollinators mediated strong selection for increased petal brightness (Δβpoll = 0.42) and contrast (Δβpoll = 0.51). Pollinators also tended to mediate stabilizing selection on brightness (Δγpoll = –0.27, n.s.) favoring the most common phenotype in the population. Selection for reduced petal brightness among hand‐pollinated plants indicated a fitness cost associated with brightness. The results demonstrate that flower color traits influence pollination success and seed production in A. morio, indicating that they affect attractiveness to pollinators, efficiency of pollen transfer, or both. The documented selection is consistent with facilitated pollination and selection for color convergence toward cooccurring rewarding species.  相似文献   

2.
Abstract Correlation among phenotypic traits may be explained by correlational selection, the simultaneous selection of more than one trait, or by genetic and/or developmental factors. In Escallonia myrtoidea, a tree with scented flowers from central Chile, inflorescence size and the amount of floral scents were positively correlated. Independent manipulation of scent and inflorescence size in a factorial design was used to assess the occurrence of pollinator‐mediated correlational selection. Dependency on pollinators for seed set was also assessed. If pollinator‐mediated correlational selection occurs, nonadditive effects of both traits are expected, albeit only when the effect of manipulating the state of such traits is disadvantageous with respect to the naturally occurring inflorescences, and provided that plants are not limited by pollinators for seed set and pollen export. Escallonia myrtoidea was very strongly pollinator‐limited for seed set and pollen export. Pollinator‐mediated additive effects were not observed in the frequency of visits by pollinators, pollen export, and seed set of E. myrtoidea after experiencing scent and inflorescence size manipulations. Consequently, there was no support for pollinator‐mediated correlational selection between those traits, suggesting the prevalence of genetic and/or developmental factors.  相似文献   

3.
Although the evolution and diversification of flowers is often attributed to pollinator-mediated selection, interactions between co-occurring plant species can alter patterns of selection mediated by pollinators and other agents. The extent to which both floral density and congeneric species richness affect patterns of net and pollinator-mediated selection on multiple co-occurring species in a community is unknown and is likely to depend on whether co-occurring plants experience competition or facilitation for reproduction. We conducted an observational study of selection on four species of Clarkia (Onagraceae) and tested for pollinator-mediated selection on two Clarkia species in communities differing in congeneric species richness and local floral density. When selection varied with community context, selection was generally stronger in communities with fewer species, where local conspecific floral density was higher, and where local heterospecific floral density was lower. These patterns suggest that intraspecific competition at high densities and interspecific competition at low densities may affect the evolution of floral traits. However, selection on floral traits was not pollinator mediated in Clarkia cylindrica or Clarkia xantiana, despite variation in pollinator visitation and the extent of pollen limitation across communities for C. cylindrica. As such, interactions between co-occurring species may alter patterns of selection mediated by abiotic agents of selection.  相似文献   

4.
Geographic trait variations are often caused by locally different selection regimes. As a steep environmental cline along altitude strongly influences adaptive traits, mountain ecosystems are ideal for exploring adaptive differentiation over short distances. We investigated altitudinal floral size variation of Campanula punctata var. hondoensis in 12 populations in three mountain regions of central Japan to test whether the altitudinal floral size variation was correlated with the size of the local bumblebee pollinator and to assess whether floral size was selected for by pollinator size. We found apparent geographic variations in pollinator assemblages along altitude, which consequently produced a geographic change in pollinator size. Similarly, we found altitudinal changes in floral size, which proved to be correlated with the local pollinator size, but not with altitude itself. Furthermore, pollen removal from flower styles onto bees (plant's male fitness) was strongly influenced by the size match between flower style length and pollinator mouthpart length. These results strongly suggest that C. punctata floral size is under pollinator‐mediated selection and that a geographic mosaic of locally adapted C. punctata exists at fine spatial scale.  相似文献   

5.
Natural selection should reduce phenotypic variation and increase integration of floral traits involved in placement of pollen grains on stigmas. In this study, we examine the role of pollinators and breeding system on the evolution of floral traits by comparing the patterns of floral phenotypic variances and covariances in 20 Ipomoea species that differ in their level of pollination specialization and pollinator dependence incorporating phylogenetic relatedness. Plants with specialized pollination (i.e., those pollinated by one functional group or by few morphospecies) displayed less phenotypic variation and greater floral integration than generalist plants. Self‐compatible species also displayed greater floral integration than self‐incompatible species. Floral traits involved in pollen placement and pick up showed less variation and greater integration than floral traits involved in pollinator attraction. Analytical models indicate that both breeding system and the number of morphospecies had significant effects on floral integration patterns although only differences in the former were significant after accounting for phylogeny. These results suggest that specialist/self‐compatible plants experience more consistent selection on floral traits than generalist/self‐incompatible plants. Furthermore, pollinators and breeding system promote integration of floral traits involved in pollen placement and pick up rather than integration of the whole flower.  相似文献   

6.
Plant–pollinator interactions are believed to play a major role in the evolution of floral traits. Flower colour and flower size are important for attracting pollinators, directly influencing reproduction, and thus expected to be under pollinator‐mediated selection. Pollinator‐mediated selection is also proposed to play a role in maintaining flower colour polymorphism within populations. However, pigment concentrations, and thus flower colour, are also under selective pressures independent of pollinators. We quantified phenotypic pollinator‐mediated selection on flower colour and size in two colour polymorphic Iris species. Using female fitness, we estimated phenotypic selection on flower colour and size, and tested for pollinator‐mediated selection by comparing selection gradients between flowers open to natural pollination and supplementary pollinated flowers. In both species, we found evidence for pollen limitation, which set the base for pollinator‐mediated selection. In the colour dimorphic Iris lutescens, while pigment concentration and flower size were found to be under selection, this was independent of pollinators. For the polymorphic Iris pumila, pigment concentration is under selective pressure by pollinators, but only for one colour morph. Our results suggest that pollinators are not the main agents of selection on floral traits in these irises, as opposed to the accepted paradigm on floral evolution. This study provides an opposing example to the largely‐accepted theory that pollinators are the major agent of selection on floral traits.  相似文献   

7.
The degree to which fine‐scaled variation in floral symmetry is associated with variation in plant fitness remains unresolved, as does the question of whether floral symmetry is in itself a target of pollinator‐mediated selection. Geranium robertianum (Geraniaceae) is a broadly distributed species whose five‐petaled flowers vary widely with respect to their degree of rotational asymmetry. In this study, we used a naturally occurring population of plants to investigate whether floral rotational asymmetry and leaf bilateral symmetry were phenotypically correlated with a series of fitness‐related traits, and also used an experimental array with model flowers to investigate the preference of insect visitors for varying degrees of floral size and symmetry. We found that leaf asymmetry was not associated with any of the phenotypic traits measured, and that the degree of floral rotational asymmetry was strongly associated with decreased flower size and decreased pollen production. Our experimental arrays showed that insect visitors did not discriminate among model flowers on the basis of size or symmetry alone; however, insect visitors preferentially visited smaller, symmetric model flowers over larger, severely asymmetric model flowers. Taken together, our results suggest that floral and leaf symmetry in G. robertianum are not likely strong indicators of phenotypic quality, and that floral symmetry is unlikely to be a target of pollinator‐mediated selection. However, the relationship between floral asymmetry and pollen production may provide a role for fecundity selection on symmetry in this species. These data importantly add to the growing literature on the adaptive nature of floral symmetry in the wild.  相似文献   

8.
Hybridization between closely related lineages is a mechanism that might promote substantive changes in phenotypic traits of descendants, resulting in transgressive evolution. Interbreeding between divergent but morphologically similar lineages can produce exceptional phenotypes, but the potential for transgressive variation to facilitate long‐term trait changes in derived hybrid lineages has received little attention. We compare pollinator‐mediated selection on transgressive floral traits in both early‐generation and derived hybrid lineages of the Piriqueta cistoides ssp. caroliniana complex. The bowl‐shaped flowers of morphotypes in this complex have similar gross morphologies and attract a common suite of small insect pollinators. However, they are defined by significant differences in characters that generate pollinator interest and visitation, including floral area and petal separation. In common garden experiments, patterns of pollen deposition in early‐generation recombinant hybrids indicate that Piriqueta's pollinators favour flowers with greater area and reduced petal separation. Changes in floral morphology in derived hybrid lineages are consistent with predictions from selection gradients, but the magnitude of change is limited relative to the range of transgressive variation. These results suggest that hybridization provides variation for evolution of divergent floral traits. However, the potential for extreme transgressive variants to contribute to phenotypic shifts may be limited due to reduced heritability, evolutionary constraints or fitness trade‐offs.  相似文献   

9.
Covariation among traits can modify the evolutionary trajectory of complex structures. This process is thought to operate at a microevolutionary scale, but its long‐term effects remain controversial because trait covariation can itself evolve. Flower morphology, and particularly floral trait (co)variation, has been envisioned as the product of pollinator‐mediated selection. Available evidence suggests that major changes in pollinator assemblages may affect the joint expression of floral traits and their phenotypic integration. We expect species within a monophyletic lineage sharing the same pollinator type will show not only similarity in trait means but also similar phenotypic variance‐covariance structures. Here, we tested this expectation using eighteen Salvia species pollinated either by bees or by hummingbirds. Our findings indicated a nonsignificant multivariate phylogenetic signal and a decoupling between means and variance‐covariance phenotypic matrices of floral traits during the evolution to hummingbird pollination. Mean trait value analyses revealed significant differences between bee‐ and hummingbird‐pollinated Salvia species although fewer differences were detected in the covariance structure between groups. Variance‐covariance matrices were much more similar among bee‐ than hummingbird‐pollinated species. This pattern is consistent with the expectation that, unlike hummingbirds, bees physically manipulate the flower, presumably exerting stronger selection pressures favouring morphological convergence among species. Overall, we conclude that the evolution of hummingbird pollination proceeded through different independent transitions. Thus, although the evolution of hummingbird pollination led to a new phenotypic optimum, the process involved the diversification of the covariance structure.  相似文献   

10.
The influence of locally different species interactions on trait evolution is a focus of recent evolutionary studies. However, few studies have demonstrated that geographically different pollinator‐mediated selection influences geographic variation in floral traits, especially across a narrow geographic range. Here, we hypothesized that floral size variation in the Japanese herb Prunella vulgaris L. (Lamiaceae) is affected by geographically different pollinator sizes reflecting different pollinator assemblages. To evaluate this hypothesis, we posed two questions. (1) Is there a positive correlation between floral length and the proboscis length of pollinators (bumblebees) across altitude in a mountain range? (2) Does the flower–pollinator size match influence female and male plant fitness? We found geographic variation in the assemblage of pollinators of P. vulgaris along an altitudinal gradient, and, as a consequence, the mean pollinator proboscis length also changed altitudinally. The floral corolla length of P. vulgaris also varied along an altitudinal gradient, and this variation strongly correlated with the local pollinator size but did not correlate with altitude itself. Furthermore, we found that the size match between the floral corolla length and bee proboscis length affected female and male plant fitness and the optimal size match (associated with peak fitness) was similar for the female and male fitness. Collectively, these results suggest that pollinator‐mediated selection influences spatial variation in the size of P. vulgaris flowers at a fine spatial scale.  相似文献   

11.

Premise

Linum suffruticosum shows variations in pollinator fit, pollen pickup, and local pollinators that predict pollen deposition rates. The species often coflowers with other Linum species using the same pollinators. We investigated whether L. suffruticosum trait variation could be explained by local patterns of pollinator sharing and associated evolution to reduce interspecific pollen transfer.

Methods

Pollinator observations were made in different localities (single species, coflowering with other congeners). Floral traits were measured to detect differences across populations and from coflowering species. Reproductive costs were quantified using interspecific hand pollinations and measures of pollen-tube formation, combined with observations of pollen arrival on stigmas and pollen-tube formation after natural pollination in allopatric and sympatric localities.

Results

The size and identity of the most important pollinator of L. suffruticosum and whether there was pollinator sharing with coflowering species appeared to explain floral trait variation related to pollinator fit. The morphological overlap of the flowers of L. suffruticosum with those of coflowering species varied, depending on coflowering species identity. A post-pollination incompatibility system maintains reproductive isolation, but conspecific pollen-tube formation was lower after heterospecific pollination. Under natural pollination at sites of coflowering with congeners, conspecific pollen-tube formation was lower than at single-species localities.

Conclusions

Trait variation in L. suffruticosum appears to respond to the most important local pollinator. Locally, incomplete pollinator partitioning might cause interspecific pollination, imposing reproductive costs. These reproductive costs may generate selection on floral traits for reduced morphological overlap with coflowering congeners, leading to the evolution of pollination ecotypes.  相似文献   

12.
We studied six populations of the hummingbird‐pollinated Nicotiana glauca to determine if the marked differences in the degree of floral‐pollinator mismatch between populations promote divergences in the pattern of pollinator‐mediated phenotypic selection on single traits and on the evolution of complexes of many interacting floral traits. We found evidence that flower phenotype is being shaped by pollinator‐mediated phenotypic selection, since corolla length was consistently under contemporary directional or stabilizing selection. Weak directional selection for longer corollas was found in two populations with low flower–pollinator mismatch; much stronger directional selection was detected for shorter corollas in two populations with high flower–pollinator mismatch; finally, the remaining two populations with intermediate flower–pollinator mismatch showed stabilizing selection for corolla length. N. glauca populations differed in every flower character measured but variations in pollinator‐mediated selection among populations were only observed for corolla length. Multiple covariation among traits was favoured, as suggested by the predominately functional patterns of integration and selection of complexes of many interacting floral traits. This was consistent with the patterns of correlational selection exhibited by four of the six populations, where corolla length was under significant selection in combination with corolla width, style length or stamen length. Overall floral integration was relatively high in all populations but phenotypic integration patterns were not clearly accounted by the degree of flower–pollinator mismatch or type of phenotypic selection, suggesting that trait covariation at the entire flower level is not explained by the current scenario of pollinator‐mediated selection.  相似文献   

13.
Long‐term variation in the population density of honey bees Apis mellifera across landscapes has been shown to correlate with variation in the floral traits of plant populations in these landscapes, suggesting that variations in pollinator population density and foraging rates can drive floral trait evolution of their host plants. However, it remained to be determined whether this variation in plant traits is associated with adaptive variation in plant reproductive strategies under conditions of high and low pollinator densities. Here we conducted a reciprocal transplant experiment to examine how this variation in floral traits, under conditions of either high and low pollinator density, impacted seed production in the Tibetan lotus Saussurea nigrescens. In 2014 and 2015, we recorded the floral traits, pollinator visitation rates, and seed production of S. nigrescens populations grown in both home sites and foreign sites, where sites varied in honey bee population density. Our results demonstrated that the floral traits reflected those of their original population, regardless of their current location. However, seed production varied with both population origin and transplant site. Seed number was positively correlated with flower abundance in the pollinator‐rich sites, but with nectar production in the pollinator‐poor sites. Pollinator visitation rate was also positively correlated with flower number at pollinator‐rich sites, and with nectar volume at pollinator‐poor sites. Overall, the local genotype had higher seed production than nonlocal genotypes in home sites. However, when pollen is hand‐supplemented, plants from pollinator‐rich populations had higher seed production than plants from pollinator‐poor populations, regardless of whether they were transplanted to pollinator‐rich or ‐poor sites. These results suggest that the plant genotypic differences primarily drive variation in pollinator attraction, and this ultimately drives variation in seed: ovule ratio. Thus, our results suggest that flowering plant species use different reproductive strategies to respond to high or low pollinator densities.  相似文献   

14.
Floral traits have largely been attributed to phenotypic selection in plant–pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator‐mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator‐mediated selection explained most of the between‐population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator‐mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.  相似文献   

15.
Floral traits are hypothesized to evolve primarily in response to selection by pollinators. However, selection can also be mediated by other environmental factors. To understand the relative importance of pollinator‐mediated selection and its variation among trait and pollinator types, we analyzed directional selection gradients on floral traits from experiments that manipulated the environment to identify agents of selection. Pollinator‐mediated selection was stronger than selection by other biotic factors (e.g., herbivores), but similar in strength to selection by abiotic factors (e.g., soil water), providing partial support for the hypothesis that floral traits evolve primarily in response to pollinators. Pollinator‐mediated selection was stronger on pollination efficiency traits than on other trait types, as expected if efficiency traits affect fitness via interactions with pollinators, but other trait types also affect fitness via other environmental factors. In addition to varying among trait types, pollinator‐mediated selection varied among pollinator taxa: selection was stronger when bees, long‐tongued flies, or birds were the primary visitors than when the primary visitors were Lepidoptera or multiple animal taxa. Finally, reducing pollinator access to flowers had a relatively small effect on selection on floral traits, suggesting that anthropogenic declines in pollinator populations would initially have modest effects on floral evolution.  相似文献   

16.
Plant–pollinator relationships are often mediated by floral traits that advertise the presence or amount of rewards. However, herbivores may also use these traits to find their hosts. In Dalechampia scandens, we tested whether floral advertisements that attract pollinators were also used by seed predators, and whether this generated conflicting selection pressures. We studied the influence of natural variation in the size of showy bracts, amount of reward, and two shape traits on pollinator visitation, pollen arrival on stigmas, seed production and seed predation. We then built a multivariate fitness function for these traits to estimate selection generated by pollinators and seed predators. Blossoms with larger bracts were visited by bees more frequently and received more pollen on their stigmas. Seed predators laid more eggs on blossoms with larger bracts and also on blossoms later producing more seeds. Consequently, selection for larger bract size exerted by pollinators was counteracted by the selection exerted by seed predators. As a result, net selection on bract size tended to be stabilizing. Additionally, we found selection on traits that increased the rate of self‐pollination (assuming uniform seed quality). These results illustrate the importance of both mutualists and antagonists in floral evolution, as well as the value of taking an integrative approach to assessing selection on floral traits.  相似文献   

17.
Plant–pollinator interactions are thought to be major drivers of floral trait diversity. However, the relative importance of divergent pollinator‐mediated selection vs. neutral processes in floral character evolution has rarely been explored. We tested for adaptive floral trait evolution by comparing differentiation at neutral genetic loci to differentiation at quantitative floral traits in a putative Ipomopsis aggregata hybrid zone. Typical I. aggregata subsp. candida displays slender white tubular flowers that are typical of flowers pollinated by hawkmoths, and subsp. collina displays robust red tubular flowers typical of flowers pollinated by hummingbirds; yet, hybrid flower morphs are abundant across the East Slope of the Colorado Rockies. We estimated genetic differentiation (FST) for nuclear and chloroplast microsatellite loci and used a half‐sib design to calculate quantitative trait divergence (QST) from collection sites across the morphological hybrid zone. We found little evidence for population structure and estimated mean FST to be 0.032. QST values for several floral traits including corolla tube length and width, colour, and nectar volume were large and significantly greater than mean FST. We performed multivariate comparisons of neutral loci to genetic correlations within and between populations and found a strong signal for divergent selection, suggesting that specific combinations of floral display and reward traits may be the targets of selection. Our results show little support for historical subspecies categories, yet floral traits are more diverged than expected due to drift alone. Non‐neutral divergence for multivariate quantitative traits suggests that selection by pollinators is maintaining a correlation between display and reward traits.  相似文献   

18.
Stronger pollen limitation should increase competition among plants, leading to stronger selection on traits important for pollen receipt. The few explicit tests of this hypothesis, however, have provided conflicting support. Using the arithmetic relationship between these two quantities, we show that increased pollen limitation will automatically result in stronger selection (all else equal) although other factors can alter selection independently of pollen limitation. We then tested the hypothesis using two approaches. First, we analysed the published studies containing information on both pollen limitation and selection. Second, we explored how natural selection measured in one Ontario population of Lobelia cardinalis over 3 years and two Michigan populations in 1 year relates to pollen limitation. For the Ontario population, we also explored whether pollinator‐mediated selection is related to pollen limitation. Consistent with the hypothesis, we found an overall positive relationship between selection strength and pollen limitation both among species and within L. cardinalis. Unexpectedly, this relationship was found even for vegetative traits among species, and was not found in L. cardinalis for pollinator‐mediated selection on nearly all trait types.  相似文献   

19.
Most studies on pollinator‐mediated selection have been performed in generalized rather than specialized pollination systems. This situation has impeded evaluation of the extent to which selection acts on attraction or specialized key floral traits involved in the plant‐pollinator phenotypic interphase. We studied pollinator‐mediated selection in four populations of Nierembergia linariifolia, a self‐incompatible and oil‐secreting plant pollinated exclusively by oil‐collecting bees. We evaluated whether floral traits experience variable selection among populations and whether attraction and fit traits are heterogeneously selected across populations. Populations differed in every flower trait and selection was consistently observed for corolla size and flower shape, two traits involved in the first steps of the pollination process. However, we found no selection acting on mechanical‐fit traits. The observation that selection occurred upon attraction rather than mechanical‐fit traits, suggests that plants are not currently evolving fine‐tuned morphological adaptations to local pollinators and that phenotypic matching is not necessarily an expected outcome in this specialized pollination system.  相似文献   

20.
There is discussion over whether pollen limitation exerts selection on floral traits to increase floral display or selects for traits that promote autonomous self‐fertilization. Some studies have indicated that pollen limitation does not mediate selection on traits associated with either pollinator attraction or self‐fertilization. Primula tibetica is an inconspicuous cross‐fertilized plant that may suffer from pollen limitation. We conducted a selection analysis on P. tibetica to investigate whether pollen limitation results in selection for an increased floral display in case the evolution of autonomous self‐fertilization has been difficult for this plant. The self‐ and intra‐morph incompatibility features, the capacity for autonomous self‐fertilization, and the magnitude of pollen limitation were examined through hand‐pollination experiments. In 2016, we applied selection analysis on the flowering time, corolla width, stalk height, flower tube length, and flower number in P. tibetica by tagging 76 open‐pollinated plants and 37 hand‐pollinated plants in the field. Our results demonstrated that P. tibetica was strictly self‐ and intra‐morph incompatible. Moreover, the study population underwent severe pollen limitation during the 2016 flowering season. The selection gradients were found to be significantly positive for flowering time, flower number, and corolla width, and marginally significant for the stalk height. Pollinator‐mediated selection was found to be significant on the flower number and corolla width, and marginally significant on stalk height. Our results indicate that the increased floral display may be a vital strategy for small distylous species that have faced difficulty in evolving autonomous self‐fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号