首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Species may circumvent the impacts of climate warming if the habitats they use reduce ambient temperature. In this study, we identified which frog species from a tropical montane rain forest in the Philippines may be vulnerable to climate warming. To do so, we selected five anuran species that utilize four breeding habitats and identified the sensitivity and exposure of tadpoles and direct‐developer eggs to heat by measuring their critical thermal maximums (CTmax) and the habitat‐specific temperatures they experience. Our study species included two direct‐developer frogs—one species that lays its eggs on exposed leaves, and another that lays its eggs in ferns—and three species that produce aquatic free‐swimming tadpoles—two stream breeders, and one phytotelm (tree hole) breeder. We compared thermal tolerances derived from microclimates of breeding habitats with tolerances derived from macroclimate (i.e., non‐buffered air temperature taken from the rain forest canopy). We also examined whether differences in CTmax existed across life‐history stages (egg, metamorph/young‐of‐year, and adult) for the two direct‐developer frog species. Habitats buffered ambient temperature and expanded thermal tolerances of all frog species. We found that direct‐developers, however, are more vulnerable to increased temperatures than aquatic breeders—indicated by their high sensitivity to temperature, and exposure to high temperatures. Direct‐developer eggs were more sensitive to warming than both metamorph and adult life‐history stages. Thermally buffered microhabitats may represent the only protection against current and impending climate warming. Our data highlight the importance of considering sensitivity and exposure in unison when deciphering warming vulnerability of frogs.  相似文献   

2.
    
Ongoing climate change has profoundly affected global biodiversity, but its impacts on populations across elevations remain understudied. Using mechanistic niche models incorporating species traits, we predicted ecophysiological responses (activity times, oxygen consumption and evaporative water loss) for lizard populations at high-elevation (<3600 m asl) and extra-high-elevation (≥3600 m asl) under recent (1970–2000) and future (2081–2100) climates. Compared with their high-elevation counterparts, lizards from extra-high-elevation are predicted to experience a greater increase in activity time and oxygen consumption. By integrating these ecophysiological responses into hybrid species distribution models (HSDMs), we were able to make the following predictions under two warming scenarios (SSP1-2.6, SSP5-8.5). By 2081–2100, we predict that lizards at both high- and extra-high-elevation will shift upslope; lizards at extra-high-elevation will gain more and lose less habitat than will their high-elevation congeners. We therefore advocate the conservation of high-elevation species in the context of climate change, especially for those populations living close to their lower elevational range limits. In addition, by comparing the results from HSDMs and traditional species distribution models, we highlight the importance of considering intraspecific variation and local adaptation in physiological traits along elevational gradients when forecasting species' future distributions under climate change.  相似文献   

3.
    
Experimental measurements were collected in the laboratory to evaluate the maximum thermal limit and thermal plasticity of Neotropical juvenile fish with different life habitats (demersal and pelagic) from surf zone in response to a “heat‐wave experiment”. Trials were conducted using two temperature acclimations (Ta), including the current average temperature of Southeastern Brazil (Ta: 14 days at 25°C) and the “heat‐wave experiment” (Ta: 14 days at 30°C), simulating a heat‐wave event that occurs when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5°C. Typical species of the surf zone were used: the demersal White sea catfish (Genidens barbus) and Gulf kingcroaker (Menticirrhus littoralis), and the pelagic fishes Great pompano (Trachinotus goodei) and Long‐fin mullet (Mugil brevirostris). The thermal range and plasticity values for the both life‐habitats species were verified through current and heat‐wave acclimation. The thermal tolerance at high temperatures (CTmax) of these species differed between Ta, habitat and species. Fish showed a species‐specific response to temperature increase, regardless of their habitat even under similar abiotic conditions. However, at the heat‐wave simulation, the demersal fish presented a greater thermal plasticity in relation to the pelagic fish. Despite the higher thermal tolerance when exposed to heat‐wave simulation, all fish species displayed a lower thermal edge safety that is markedly close to their maximum thermal limits.  相似文献   

4.
苏州地区两栖爬行动物多样性及其动态变化   总被引:2,自引:0,他引:2  
赵肯堂 《四川动物》2000,19(3):140-142
本文对苏州地区的两栖爬行动物作了全部种类的再鉴定,同时还对现丰的34种动物与前人的记录进行动态变化较,并讨论了近关个世纪这两类动物的种类和数量减少,以及动物体变小等动态变化的原因。  相似文献   

5.
    
The Australian alpine region harbours a wide range of species, many of which are endemic and of high conservation value. Among these species, the endangered mountain pygmy‐possum, Burramys parvus, is of particular interest because this specialized marsupial is highly sensitive to extreme temperatures. The selection of microhabitats by B. parvus is a critical but poorly understood element of its biological characteristics. To understand the microhabitat preferences of B. parvus, we performed detailed investigations of the thermal properties of alpine boulder fields. The selection of a preferred microclimate was demonstrated by comparing temperatures and environmental conditions in preferred and non‐preferred boulder fields. The variability of the daily temperature depended on the depth at which measurements were made within the boulder fields. Temperatures were more stable as depth increased. The results suggest that B. parvus prefers to occupy deep boulder fields at high elevations with good rock structure (small rock and cavity size with multiple layers) and long snow duration because these boulder fields can provide a favourable microclimate. At 1 m depth, the maximum temperatures in the hottest part of the year were 1.27°C cooler in preferred compared to non‐preferred boulder fields. In the coldest part of the year, immediately following the melting of persistent snow cover, the minimum temperatures at a depth of 1 m were 1.67°C warmer in preferred compared to non‐preferred boulder fields. On average, the snow duration was 27 days greater in the boulder fields preferred by B. parvus than in non‐preferred boulder fields. Our results emphasize the value of boulder field microhabitats as thermal refuges for small mammals in rocky habitats within alpine environments in the light of continuing habitat loss and climate change.  相似文献   

6.
    
We tested whether thermal tolerance and aerobic performance differed between two populations of Nile perch (Lates niloticus) originating from the same source population six decades after their introduction into two lakes in the Lake Victoria basin in East Africa. We used short-term acclimation of juvenile fish to a range of temperatures from ambient to +6°C, and performed critical thermal maximum (CTmax) and respirometry tests to measure upper thermal tolerance, resting and maximum metabolic rates, and aerobic scope (AS). Across acclimation temperatures, Nile perch from the cooler lake (Lake Nabugabo, Uganda) tended to have lower thermal tolerance (i.e., CTmax) and lower aerobic performance (i.e., AS) than Nile perch from the warmer waters of Lake Victoria (Bugonga region, Uganda). Effects of temperature acclimation were more pronounced in the Lake Victoria population, with the Lake Nabugabo fish showing less thermal plasticity in most metabolic traits. Our results suggest phenotypic divergence in thermal tolerance between these two introduced populations in a direction consistent with an adaptive response to local thermal regimes.  相似文献   

7.
2006年7月18日~8月14日,由四川大学、中科院成都生物研究所和台湾国立中山大学组成新疆两栖爬行动物考察队,对南北疆进行了为期近一个月的野外考察。本次考察共采集标本328号,经鉴定共23种,分隶11属7科,其中两栖纲2科2属4种,爬行纲5科9属19种。本次调查还发现了一些蜥蜴和蛇种的新分布记录。  相似文献   

8.
    
Ocean warming may lead to smaller body sizes of marine ectotherms, because metabolic rates increase exponentially with temperature while the capacity of the cardiorespiratory system to match enhanced oxygen demands is limited. Here, we explore the impact of rising sea water temperatures on Atlantic cod (Gadus morhua), an economically important fish species. We focus on changes in the temperature‐dependent growth potential by a transfer function model combining growth observations with climate model ensemble temperatures. Growth potential is expressed in terms of asymptotic body weight and depends on water temperature. We consider changes between the periods 1985–2004 and 2081–2100, assuming that future sea water temperatures will evolve according to climate projections for IPCC AR5 scenario RCP8.5. Our model projects a response of Atlantic cod to future warming, differentiated according to ocean regions, leading to increases of asymptotic weight in the Barents Sea, while weights are projected to decline at the southern margin of the biogeographic range. Southern spawning areas will disappear due to thermal limitation of spawning stages. These projections match the currently observed biogeographic shifts and the temperature‐ and oxygen‐dependent decline in routine aerobic scope at southern distribution limits.  相似文献   

9.
    
Critical thermal maximum (CTmax) is widely used to measure upper thermal tolerance in fish but is rarely examined in embryos. Upper thermal limits generally depend on an individual's thermal history, which molds plasticity. We examined how thermal acclimation affects thermal tolerance of brook trout (Salvelinus fontinalis) embryos using a novel method to assess CTmax in embryos incubated under three thermal regimes. Warm acclimation was associated with an increase in embryonic upper thermal tolerance. However, CTmax variability was markedly higher than is typical for juvenile or adult salmonids.  相似文献   

10.
    
Montane reptiles are predicted to move to higher elevations in response to climate warming. However, whether upwards-shifting reptiles will be physiologically constrained by hypoxia at higher elevations remains unknown. We investigated the effects of hypoxic conditions on preferred body temperatures (Tpref) and thermal tolerance capacity of a montane lizard (Phrynocephalus vlangalii) from two populations on the Qinghai–Tibet Plateau. Lizards from 2600 m a.s.l. were exposed to O2 levels mimicking those at 2600 m (control) and 3600 m (hypoxia treatment). Lizards from 3600 m a.s.l. were exposed to O2 levels mimicking those at 3600 m (control) and 4600 m (hypoxia treatment). The Tpref did not differ between the control and hypoxia treatments in lizards from 2600 m. However, lizards from 3600 m selected lower body temperatures when exposed to the hypoxia treatment mimicking the O2 level at 4600 m. Additionally, the hypoxia treatment induced lower critical thermal minimum (CTmin) in lizards from both populations, but did not affect the critical thermal maximum (CTmax) in either population. Our results imply that upwards-shifting reptiles may be constrained by hypoxia if a decrease in Tpref reduces thermally dependent fitness traits, despite no observed effect on their heat tolerance.  相似文献   

11.
12.
    
  1. Climate change is expected to affect hydrologic and thermal regimes of river ecosystems. During dry periods when river flows decrease and water temperatures increase, the hyporheic zone (HZ) can provide a refuge to surface aquatic invertebrates and enhance the resilience capacity of riverine ecosystems. However, shifts from up‐ to downwelling flow conditions in the HZ could jeopardise this capacity.
  2. Using laboratory mesocosms and high‐resolution fibre‐optic distributed temperature sensing, we explored the combined effects of five different increased surface water temperature treatments (from 15 to 27°C at 3°C intervals) and the direction of water exchange on the ability of Gammarus pulex (Crustacea: Amphipoda: Gammaridae) to migrate into the HZ as a response to warming. We determined the survival rates of this ubiquitous hyporheic dweller and its rates of consumption of alder (Alnus glutinosa; Betulaceae) leaf litter in the HZ.
  3. Results showed that at increasing surface water temperature, leaf‐litter breakdown was observed at a greater depth in the sediments under downwelling flow conditions, that is, G. pulex migrated deeper into the HZ compared with upwelling conditions, resulting in greater survival rates (64 ± 11 vs. 44 ± 10%). However, under both upwelling and downwelling conditions, we found evidence for potential use of the hyporheic zone as a thermal refuge for G. pulex. Below sediment depths of 25 cm, temperatures remained low (<22°C) even when surface waters were at 27°C, so temperatures deep in the hyporheic zone never exceeded critical thermal thresholds for G. pulex.
  4. This study provides evidence that alterations to the direction of groundwater–surface water exchange can alter the capacity of the HZ to provide a refuge for benthic invertebrates, thereby affecting the resilience of river communities to warming under climate change.
  相似文献   

13.
    
Climatic warming is altering the behavior of individuals and the composition of communities. However, recent studies have shown that the impact of warming on ectotherms varies geographically: species at warmer sites where environmental temperatures are closer to their upper critical thermal limits are more likely to be negatively impacted by warming than are species inhabiting relatively cooler sites. We used a large‐scale experimental temperature manipulation to warm intact forest ant assemblages in the field and examine the impacts of chronic warming on foraging at a southern (North Carolina) and northern (Massachusetts) site in eastern North America. We examined the influence of temperature on the abundance and recruitment of foragers as well as the number of different species observed foraging. Finally, we examined the relationship between the mean temperature at which a species was found foraging and the critical thermal maximum temperature of that species, relating functional traits to behavior. We found that forager abundance and richness were related to the experimental increase in temperature at the southern site, but not the northern site. Additionally, individual species responded differently to temperature: some species foraged more under warmer conditions, whereas others foraged less. Importantly, these species‐specific responses were related to functional traits of species (at least at the Duke Forest site). Species with higher critical thermal maxima had greater forager densities at higher temperatures than did species with lower critical thermal maxima. Our results indicate that while climatic warming may alter patterns of foraging activity in predictable ways, these shifts vary among species and between sites. More southerly sites and species with lower critical thermal maxima are likely to be at greater risk to ongoing climatic warming.  相似文献   

14.
Despite evidence that organismal distributions are shifting in response to recent climatic warming, we have little information on direct links between species' physiology and vulnerability to climate change. We demonstrate a positive relationship between upper thermal tolerance and its acclimatory ability in a well-defined clade of closely related European diving beetles. We predict that species with the lowest tolerance to high temperatures will be most at risk from the adverse effects of future warming, since they have both low absolute thermal tolerance and poor acclimatory ability. Upper thermal tolerance is also positively related to species' geographical range size, meaning that species most at risk are already the most geographically restricted ones, being endemic to Mediterranean mountain systems. Our findings on the relationship between tolerance and acclimatory ability contrast with results from marine animals, suggesting that generalizations regarding thermal tolerance and responses to future rapid climate change may be premature.  相似文献   

15.
许雪峰 《四川动物》2001,20(4):209-210
1995-2000年,对安徽滁州琅琊山中边地区两栖爬行运行进行了调查研究,共发现两栖动物5种,隶属2目3科,占安徽省两栖动物38种的13.2%;爬行动物19种,隶属2目7科,占福建省爬行动物68种的27.9%。  相似文献   

16.
    
Kelp communities are experiencing exacerbated heat-related impacts from more intense, frequent, and deeper marine heatwaves (MHWs), imperiling the long-term survival of kelp forests in the climate change scenario. The occurrence of deep thermal anomalies is of critical importance, as elevated temperatures can impact kelp populations across their entire bathymetric range. This study evaluates the impact of MHWs on mature sporophytes of Pterygophora californica (walking kelp) from the bathymetric extremes (8–10 vs. 25–27 m) of a population situated in Baja California (Mexico). The location is near the southernmost point of the species's broad distribution (from Alaska to Mexico). The study investigated the ecophysiological responses (e.g., photobiology, nitrate uptake, oxidative stress) and growth of adult sporophytes through a two-phase experiment: warming simulating a MHW and a post-MHW phase without warming. Generally, the effects of warming differed depending on the bathymetric origin of the sporophytes. The MHW facilitated essential metabolic functions of deep-water sporophytes, including photosynthesis, and promoted their growth. In contrast, shallow-water sporophytes displayed metabolic stress, reduced growth, and oxidative damage. Upon the cessation of warming, certain responses, such as a decline in nitrate uptake and net productivity, became evident in shallow-water sporophytes, implying a delay in heat-stress response. This indicates that variation in temperatures can result in more prominent effects than warming alone. The greater heat tolerance of sporophytes in deeper waters shows convincing evidence that deep portions of P. californica populations have the potential to serve as refuges from the harmful impacts of MHWs on shallow reefs.  相似文献   

17.
陕西长青自然保护区的两栖爬行动物   总被引:2,自引:1,他引:2  
长青自然保护区共有两栖爬行动物 2 7种 ,其中两栖动物 2目 4科 8种 ,爬行动物 3目 7科 19种。国家Ⅱ级保护动物 1种 ,即大鲵。并发现陕西省爬行动物 1新记录—水赤链游蛇。对两栖动物和爬行动物的分布特点进行了分析  相似文献   

18.
    
Temperature plays a key role in the biology of ectotherms, including anurans, which are found at higher elevations in the tropics than anywhere in the temperate zone. High elevation tropical environments are characterized by extreme daily thermal fluctuation including high daily maxima and nightly freezing. Our study investigated the contrasting operative temperatures of the anurans Telmatobius marmoratus and Pleurodema marmoratum in different environmental contexts at the same elevation and biome above 5,200 m. Telmatobius marmoratus avoids extremes of daily temperature fluctuation by utilizing thermally buffered aquatic habitat at all life stages, with minimal operative temperature variation (range: 4.6–8.0°C). Pleurodema marmoratum, in contrast, experienced operative temperatures from ?3.5 to 44°C and has one of the widest thermal breadths reported for any tropical frog, from >32°C (critical thermal maximum) to surviving freezing periods of 1 and 6 hr down to ?3.0°C. Our findings expand experimental evidence of frost tolerance in amphibians to the widespread Neotropical family Leptodactylidae, the first such evidence of frost tolerance in a tropical amphibian. Our study identifies three strategies (wide thermal tolerance breadth, use of buffered microhabitats, and behavioral thermoregulation), which allow these tropical frogs to withstand the current wide daily thermal fluctuation above 5,000 m.a.s.l. and which may help them adapt to future climatic changes. Abstract in Spanish is available with online material  相似文献   

19.
    
Marine heatwaves (MHWs) are emerging as forceful agents of ecosystem change and are increasing in frequency, duration, and intensity with climate change. During MHWs, physiological thresholds of native species may be exceeded while the performance of invasive species with warm affinities may be enhanced. As a consequence, MHWs could significantly alter an ecosystem's invasive dynamics, but such interactions are poorly understood. Following a 10-d acclimation period, we investigated the physiological resistance and resilience of an intertidal rock pool assemblage invaded by the seaweed Sargassum muticum to realistic 14-d marine heatwave scenarios (+1.5°C, +2.0°C, +3.5°C) followed by a 14-d recovery period. We conducted mesocosm experiments in both summer and winter to investigate temporal variability of MHWs. MHW treatments had clear negative impacts on native seaweeds (Fucus serratus and Chondrus crispus) while enhancing the performance of S. muticum. This pattern was consistent across season indicating that acclimation to cooler ambient temperatures results in winter MHWs having significant impacts on native species. As climate warming advances, this may ultimately lead to changes in competitive interactions and potentially exclusion of native species, while invasive species may proliferate and become more conspicuous within temperate rocky shore environments.  相似文献   

20.
广州白云山风景区两栖爬行动物调查   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号