首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complete understanding of the mode of evolution of molecular markers is important for making inferences about different population genetic parameters, especially because a number of studies have reported patterns of allelic variation at molecular markers that are not in agreement with neutral evolutionary expectations. In the present study, house mice (Mus domesticus) from the fourteenth generation of a selection experiment for increased voluntary wheel-running activity were used to test how selection on a complex behavior affects the distribution of allelic variation by examining patterns of variation at six microsatellite and four allozyme loci. This population had a hierarchical structure that allowed for simultaneous testing of the effects of selection and genetic drift on the distribution of allelic variation by comparing observed patterns of allele frequencies and estimates of genetic divergence at multiple hierarchical levels to expectations under models of neutral evolution. The levels of genetic divergence among replicate lines and between selection groups, estimated from microsatellite data or pooled microsatellite and allozyme data, were not significantly different from expectations under neutral evolution. Furthermore, the pattern of change of allele frequencies between the base population and generation 14 was largely in agreement with expectations under neutral evolution (although the PGM locus exhibited a pattern of change within populations that was difficult to explain under neutral evolution). Overall the results generally provide support for the neutral evolution of molecular markers.  相似文献   

2.
Cutter AD 《Genetics》2008,178(3):1661-1672
Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.  相似文献   

3.
The simultaneous analysis of multiple genomic loci is a powerful approach to studying the effects of population history and natural selection on patterns of genetic variation of a species. By surveying nucleotide sequence polymorphism at 334 randomly distributed genomic regions in 12 accessions of Arabidopsis thaliana, we examined whether a standard neutral model of nucleotide sequence polymorphism is consistent with observed data. The average nucleotide diversity was 0.0071 for total sites and 0.0083 for silent sites. Although levels of diversity are variable among loci, no correlation with local recombination rate was observed, but polymorphism levels were correlated for physically linked loci (<250 kb). We found that observed distributions of Tajima's D- and D/D(min)- and of Fu and Li's D-, D*- and F-, F*-statistics differed significantly from the expected distributions under a standard neutral model due to an excess of rare polymorphisms and high variances. Observed and expected distributions of Fay and Wu's H were not different, suggesting that demographic processes and not selection at multiple loci are responsible for the deviation from a neutral model. Maximum-likelihood comparisons of alternative demographic models like logistic population growth, glacial refugia, or past bottlenecks did not produce parameter estimates that were more consistent with observed patterns. However, exclusion of highly polymorphic "outlier loci" resulted in a fit to the logistic growth model. Various tests of neutrality revealed a set of candidate loci that may evolve under selection.  相似文献   

4.
5.
There are currently few predictions about when evolutionary processes are likely to play an important role in structuring community features. Determining predictors that indicate when evolution is expected to impact ecological processes in natural landscapes can help researchers identify eco-evolutionary ‘hotspots', where eco-evolutionary interactions are more likely to occur. Using data collected from a survey in freshwater cladoceran communities, landscape population genetic data and phenotypic trait data measured in a common garden, we applied a Bayesian linear model to assess whether the impact of local trait evolution in the keystone species Daphnia magna on cladoceran community trait values could be predicted by population genetic properties (within-population genetic diversity, genetic distance among populations), ecological properties (Simpson's diversity, phenotypic divergence) or environmental divergence. We found that the impact of local trait evolution varied among communities. Moreover, community diversity and phenotypic divergence were found to be better predictors of the contribution of evolution to community trait values than environmental features or genetic properties of the evolving species. Our results thus indicate the importance of ecological context for the impact of evolution on community features. Our study also demonstrates one way to detect signatures of eco-evolutionary interactions in communities inhabiting heterogeneous landscapes using survey data of contemporary ecological and evolutionary structure.  相似文献   

6.
Both neutral and adaptive evolutionary processes can cause population divergence, but their relative contributions remain unclear. We investigated the roles of these processes in population divergence in house sparrows (Passer domesticus) from Romania and Bulgaria, regions characterized by high landscape heterogeneity compared to Western Europe. We asked whether morphological divergence, complemented with genetic data in this human commensal species, was best explained by environmental variation, geographic distance, or landscape resistance—the effort it takes for an individual to disperse from one location to the other—caused by either natural or anthropogenic barriers. Using generalized dissimilarity modeling, a matrix regression technique that fits biotic beta diversity to both environmental predictors and geographic distance, we found that a small set of climate and vegetation variables explained up to ~30% of the observed divergence, whereas geographic and resistance distances played much lesser roles. Our results are consistent with signals of selection on morphological traits and of isolation by adaptation in genetic markers, suggesting that selection by natural environmental conditions shapes population divergence in house sparrows. Our study thus contributes to a growing body of evidence that adaptive evolution may be a major driver of diversification.  相似文献   

7.
The zebra finch has long been an important model system for the study of vocal learning, vocal production, and behavior. With the imminent sequencing of its genome, the zebra finch is now poised to become a model system for population genetics. Using a panel of 30 noncoding loci, we characterized patterns of polymorphism and divergence among wild zebra finch populations. Continental Australian populations displayed little population structure, exceptionally high levels of nucleotide diversity (π = 0.010), a rapid decay of linkage disequilibrium (LD), and a high population recombination rate (ρ ≈ 0.05), all of which suggest an open and fluid genomic background that could facilitate adaptive variation. By contrast, substantial divergence between the Australian and Lesser Sunda Island populations (KST = 0.193), reduced genetic diversity (π = 0.002), and higher levels of LD in the island population suggest a strong but relatively recent founder event, which may have contributed to speciation between these populations as envisioned under founder-effect speciation models. Consistent with this hypothesis, we find that under a simple quantitative genetic model both drift and selection could have contributed to the observed divergence in six quantitative traits. In both Australian and Lesser Sundas populations, diversity in Z-linked loci was significantly lower than in autosomal loci. Our analysis provides a quantitative framework for studying the role of selection and drift in shaping patterns of molecular evolution in the zebra finch genome.  相似文献   

8.
The neutral theory of molecular evolution predicts that the amount of neutral polymorphisms within a species will increase proportionally with the census population size (Nc). However, this prediction has not been borne out in practice: while the range of Nc spans many orders of magnitude, levels of genetic diversity within species fall in a comparatively narrow range. Although theoretical arguments have invoked the increased efficacy of natural selection in larger populations to explain this discrepancy, few direct empirical tests of this hypothesis have been conducted. In this work, we provide a direct test of this hypothesis using population genomic data from a wide range of taxonomically diverse species. To do this, we relied on the fact that the impact of natural selection on linked neutral diversity depends on the local recombinational environment. In regions of relatively low recombination, selected variants affect more neutral sites through linkage, and the resulting correlation between recombination and polymorphism allows a quantitative assessment of the magnitude of the impact of selection on linked neutral diversity. By comparing whole genome polymorphism data and genetic maps using a coalescent modeling framework, we estimate the degree to which natural selection reduces linked neutral diversity for 40 species of obligately sexual eukaryotes. We then show that the magnitude of the impact of natural selection is positively correlated with Nc, based on body size and species range as proxies for census population size. These results demonstrate that natural selection removes more variation at linked neutral sites in species with large Nc than those with small Nc and provides direct empirical evidence that natural selection constrains levels of neutral genetic diversity across many species. This implies that natural selection may provide an explanation for this longstanding paradox of population genetics.  相似文献   

9.
Local adaptation to environmental stress at different levels of genetic polymorphism in various plants and animals has been documented through evolution of heavy metal tolerance. We used samples of Drosophila subobscura populations from two differently polluted environments to analyze the change of chromosomal inversion polymorphism as genetic marker during laboratory exposure to lead. Exposure to environmental contamination can affect the genetic content within a particular inversion and produce targets for selection in populations from different environments. The aims were to discover whether the inversion polymorphism is shaped by the local natural environments, and if lead as a selection pressure would cause adaptive divergence of two populations during the multigenerational laboratory experiment. The results showed that populations retain signatures from past contamination events, and that heavy metal pollution can cause adaptive changes in population. Differences in inversion polymorphism between the two populations increased over generations under lead contamination in the laboratory. The inversion polymorphism of population originating from the more polluted natural environment was more stable during the experiment, both under conditions with and without lead. Therefore, results showed that inversion polymorphism as a genetic marker reflects a strong signature of adaptation to the local environment, and that historical demographic events and selection are important for both prediction of evolutionary potential and long-term viability of natural populations.  相似文献   

10.
A fundamental challenge in population genetics and molecular evolution is to understand the forces shaping the patterns of genetic diversity within and among species. Among them, mating systems are thought to have important influences on molecular diversity and genome evolution. Selfing is expected to reduce effective population size, Ne, and effective recombination rates, directly leading to reduced polymorphism and increased linkage disequilibrium compared with outcrossing. Increased isolation between populations also results directly from selfing or indirectly from evolutionary changes, such as small flowers and low pollen output, leading to greater differentiation of molecular markers than under outcrossing. The lower effective recombination rate increases the likelihood of hitch-hiking, further reducing within-deme diversity of selfers and thus increasing their genetic differentiation. There are also indirect effects on molecular evolutionary processes. Low Ne reduces the efficacy of selection; in selfers, selection should thus be less efficient in removing deleterious mutations. The rarity of heterozygous sites in selfers leads to infrequent action of biased conversion towards GC, which tends to increase sequences' GC content in the most highly recombining genome regions of outcrossers. To test these predictions in plants, we used a newly developed sequence polymorphism database to investigate the effects of mating system differences on sequence polymorphism and genome evolution in a wide set of plant species. We also took into account other life-history traits, including life form (whether annual or perennial herbs, and woody perennial) and the modes of pollination and seed dispersal, which are known to affect enzyme and DNA marker polymorphism. We show that among various life-history traits, mating systems have the greatest influence on patterns of polymorphism.  相似文献   

11.
Isolation by environment   总被引:1,自引:0,他引:1  
The interactions between organisms and their environments can shape distributions of spatial genetic variation, resulting in patterns of isolation by environment (IBE) in which genetic and environmental distances are positively correlated, independent of geographic distance. IBE represents one of the most important patterns that results from the ways in which landscape heterogeneity influences gene flow and population connectivity, but it has only recently been examined in studies of ecological and landscape genetics. Nevertheless, the study of IBE presents valuable opportunities to investigate how spatial heterogeneity in ecological processes, agents of selection and environmental variables contributes to genetic divergence in nature. New and increasingly sophisticated studies of IBE in natural systems are poised to make significant contributions to our understanding of the role of ecology in genetic divergence and of modes of differentiation both within and between species. Here, we describe the underlying ecological processes that can generate patterns of IBE, examine its implications for a wide variety of disciplines and outline several areas of future research that can answer pressing questions about the ecological basis of genetic diversity.  相似文献   

12.
A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations.  相似文献   

13.
Comparisons of levels of variability on the autosomes and X chromosome can be used to test hypotheses about factors influencing patterns of genomic variation. While a tremendous amount of nucleotide sequence data from across the genome is now available for multiple human populations, there has been no systematic effort to examine relative levels of neutral polymorphism on the X chromosome versus autosomes. We analyzed ~210 kb of DNA sequencing data representing 40 independent noncoding regions on the autosomes and X chromosome from each of 90 humans from six geographically diverse populations. We correct for differences in mutation rates between males and females by considering the ratio of within-human diversity to human-orangutan divergence. We find that relative levels of genetic variation are higher than expected on the X chromosome in all six human populations. We test a number of alternative hypotheses to explain the excess polymorphism on the X chromosome, including models of background selection, changes in population size, and sex-specific migration in a structured population. While each of these processes may have a small effect on the relative ratio of X-linked to autosomal diversity, our results point to a systematic difference between the sexes in the variance in reproductive success; namely, the widespread effects of polygyny in human populations. We conclude that factors leading to a lower male versus female effective population size must be considered as important demographic variables in efforts to construct models of human demographic history and for understanding the forces shaping patterns of human genomic variability.  相似文献   

14.
Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species'' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC), play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga) populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.  相似文献   

15.
Genes of the major histocompatibility complex (MHC) have provided some of the clearest examples of how natural selection generates discordances between adaptive and neutral variation in natural populations. The type and intensity of selection as well as the strength of genetic drift are believed to be important in shaping the resulting pattern of MHC diversity. However, evaluating the relative contribution of multiple microevolutionary forces is challenging, and empirical studies have reported contrasting results. For instance, balancing selection has been invoked to explain high levels of MHC diversity and low population differentiation in comparison with other nuclear markers. Other studies have shown that genetic drift can sometimes overcome selection and then patterns of genetic variation at adaptive loci cannot be discerned from those occurring at neutral markers. Both empirical and simulated data also indicate that loss of genetic diversity at adaptive loci can occur faster than at neutral loci when selection and population bottlenecks act simultaneously. Diversifying selection, on the other hand, explains accelerated MHC divergence as the result of spatial variation in pathogen‐mediated selective regimes. Because of all these possible scenarios and outcomes, collecting information from as many study systems as possible, is crucial to enhance our understanding about the evolutionary forces driving MHC polymorphism. In this issue, Miller and co‐workers present an illuminating contribution by combining neutral markers (microsatellites) and adaptive MHC class I loci during the investigation of genetic differentiation across island populations of tuatara Sphenodon punctatus. Their study of geographical variation reveals a major role of genetic drift in shaping MHC variation, yet they also discuss some support for diversifying selection.  相似文献   

16.
Southwest China is a biodiversity hotspot characterized by complex topography, heterogeneous regional climates and rich flora. The processes and driving factors underlying this hotspot remain to be explicitly tested across taxa to gain a general understanding of the evolution of biodiversity and speciation in the region. In this study, we examined the role played by historically neutral processes, geography and environment in producing the current genetic diversity of the subtropical pine Pinus yunnanensis. We used genetic and ecological methods to investigate the patterns of genetic differentiation and ecological niche divergence across the distribution range of this species. We found both continuous genetic differentiation over the majority of its range, and discrete isolated local clusters. The discrete differentiation between two genetic groups in the west and east peripheries is consistent with niche divergence and geographical isolation of these groups. In the central area of the species’ range, population structure was shaped mainly by neutral processes and geography rather than by ecological selection. These results show that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, and illustrate the importance of ecological factors in forming or maintaining genetic divergence across a complex landscape. Our findings differ from other phylogenetic studies that identified the historical drainage system in the region as the primary factor shaping population structure, and highlight the heterogeneous contributions that geography and environment have made to genetic diversity among taxa in southwest China.  相似文献   

17.
Chromosomal inversions allow genetic divergence of locally adapted populations by reducing recombination between chromosomes with different arrangements. Divergence between populations (or hybridization between species) is expected to leave signatures in the neutral genetic diversity of the inverted region. Quantitative expectations for these patterns, however, have not been obtained. Here, we develop coalescent models of neutral sites linked to an inversion polymorphism in two locally adapted populations. We consider two scenarios of local adaptation: selection on the inversion breakpoints and selection on alleles inside the inversion. We find that ancient inversion polymorphisms cause genetic diversity to depart dramatically from neutral expectations. Other situations, however, lead to patterns that may be difficult to detect; important determinants are the age of the inversion and the rate of gene flux between arrangements. We also study inversions under genetic drift, finding that they produce patterns similar to locally adapted inversions of intermediate age. Our results are consistent with empirical observations, and provide the foundation for quantitative analyses of the roles that inversions have played in speciation.  相似文献   

18.
Interpretation of variation across marker loci as evidence of selection   总被引:1,自引:0,他引:1  
Vitalis R  Dawson K  Boursot P 《Genetics》2001,158(4):1811-1823
Population structure and history have similar effects on the genetic diversity at all neutral loci. However, some marker loci may also have been strongly influenced by natural selection. Selection shapes genetic diversity in a locus-specific manner. If we could identify those loci that have responded to selection during the divergence of populations, then we may obtain better estimates of the parameters of population history by excluding these loci. Previous attempts were made to identify outlier loci from the distribution of sample statistics under neutral models of population structure and history. Unfortunately these methods depend on assumptions about population structure and history that usually cannot be verified. In this article, we define new population-specific parameters of population divergence and construct sample statistics that are estimators of these parameters. We then use the joint distribution of these estimators to identify outlier loci that may be subject to selection. We found that outlier loci are easier to recognize when this joint distribution is conditioned on the total number of allelic states represented in the pooled sample at each locus. This is so because the conditional distribution is less sensitive to the values of nuisance parameters.  相似文献   

19.
Broughton RE  Harrison RG 《Genetics》2003,163(4):1389-1401
Population genetics theory predicts that genetic drift should eliminate shared polymorphism, leading to monophyly or exclusivity of populations, when the elapsed time between lineage-splitting events is large relative to effective population size. We examined patterns of nucleotide variation in introns at four nuclear loci to relate processes affecting the history of genes to patterns of divergence among natural populations and species. Ancestral polymorphisms were shared among three recognized species, Gryllus firmus, G. pennsylvanicus, and G. ovisopis, and genealogical patterns suggest that successive speciation events occurred recently and rapidly relative to effective population size. High levels of shared polymorphism among these morphologically, behaviorally, and ecologically distinct species indicate that only a small fraction of the genome needs to become differentiated for speciation to occur. Among the four nuclear gene loci there was a 10-fold range in nucleotide diversity, and patterns of polymorphism and divergence suggest that natural selection has acted to maintain or eliminate variation at some loci. While nuclear gene genealogies may have limited applications in phylogeography or other approaches dependent on population monophyly, they provide important insights into the historical, demographic, and selective forces that shape speciation.  相似文献   

20.
E Luquet  J-P Léna  C Miaud  S Plénet 《Heredity》2015,114(1):69-79
Variation in the environment can induce different patterns of genetic and phenotypic differentiation among populations. Both neutral processes and selection can influence phenotypic differentiation. Altitudinal phenotypic variation is of particular interest in disentangling the interplay between neutral processes and selection in the dynamics of local adaptation processes but remains little explored. We conducted a common garden experiment to study the phenotypic divergence in larval life-history traits among nine populations of the common toad (Bufo bufo) along an altitudinal gradient in France. We further used correlation among population pairwise estimates of quantitative trait (QST) and neutral genetic divergence (FST from neutral microsatellite markers), as well as altitudinal difference, to estimate the relative role of divergent selection and neutral genetic processes in phenotypic divergence. We provided evidence for a neutral genetic differentiation resulting from both isolation by distance and difference in altitude. We found evidence for phenotypic divergence along the altitudinal gradient (faster development, lower growth rate and smaller metamorphic size). The correlation between pairwise QSTs–FSTs and altitude differences suggested that this phenotypic differentiation was most likely driven by altitude-mediated selection rather than by neutral genetic processes. Moreover, we found different divergence patterns for larval traits, suggesting that different selective agents may act on these traits and/or selection on one trait may constrain the evolution on another through genetic correlation. Our study highlighted the need to design more integrative studies on the common toad to unravel the underlying processes of phenotypic divergence and its selective agents in the context of environmental clines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号