首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inbreeding–environment interactions occur when inbreeding leads to differential fitness loss in different environments. Inbred individuals are often more sensitive to environmental stress than are outbred individuals, presumably because stress increases the expression of deleterious recessive alleles or cellular safeguards against stress are pushed beyond the organism's physiological limits. We examined inbreeding–environment interactions, along two environmental axes (temperature and rearing host) that differ in the amount of developmental stress they impose, in the seed‐feeding beetle Callosobruchus maculatus. We found that inbreeding depression (inbreeding load, L) increased with the stressfulness of the environment, with the magnitude of stress explaining as much as 66% of the variation in inbreeding depression. This relationship between L and developmental stress was not explainable by an increase in phenotypic variation in more stressful environments. To examine the generality of this experimental result, we conducted a meta‐analysis of the available data from published studies looking at stress and inbreeding depression. The meta‐analysis confirmed that the effect of the environment on inbreeding depression scales linearly with the magnitude of stress; a population suffers one additional lethal equivalent, on average, for each 30% reduction in fitness induced by the stressful environment. Studies using less‐stressful environments may lack statistical power to detect the small changes in inbreeding depression. That the magnitude of inbreeding depression scales with the magnitude of the stress applied has numerous repercussions for evolutionary and conservation genetics and may invigorate research aimed at finding the causal mechanism involved in such a relationship.  相似文献   

2.
It is commonly argued that inbred individuals should be more sensitive to environmental stress than are outbred individuals, presumably because stress increases the expression of deleterious recessive alleles. However, the degree to which inbreeding depression is dependent on environmental conditions is not clear. We use two populations of the seed-feeding beetle, Callosobruchus maculatus, to test the hypotheses that (a) inbreeding depression varies among rearing temperatures, (b) inbreeding depression is greatest at the more stressful rearing temperatures, (c) the degree to which high or low temperature is stressful for larval development varies with inbreeding level, and (d) inbreeding depression is positively correlated between different environments. Inbreeding depression (δ) on larval development varied among temperatures (i.e., there was a significant inbreeding-environment interaction). Positive correlations for degree of inbreeding depression were consistently found between all pairs of temperatures, suggesting that at least some loci affected inbreeding depression across all temperatures examined. Despite variation in inbreeding depression among temperatures, inbreeding depression did not increase consistently with our proxy for developmental stress. However, inbreeding changed which environments are benign versus stressful for beetles; although 20°C was not a stressful rearing temperature for outbred beetles, it became the most stressful environment for inbred larvae. The finding that inbreeding-environment interactions can cause normally benign environments to become stressful for inbred populations has important consequences for many areas of evolutionary genetics, artificial breeding (for conservation or food production), and conservation of natural populations.  相似文献   

3.
Theory suggests that intraspecific competition associated with direct competition between inbred and outbred individuals should be an important determinant of the severity of inbreeding depression. The reason is that, if outbred individuals are stronger competitors than inbred ones, direct competition should have a disproportionate effect on the fitness of inbred individuals. However, an individual's competitive ability is not only determined by its inbreeding status but also by competitive asymmetries that are independent of an individual's inbreeding status. When this is the case, such competitive asymmetries may shape the outcome of direct competition between inbred and outbred individuals. Here, we investigate the interface between age‐based competitive asymmetries within broods and direct competition between inbred and outbred offspring in the burying beetle Nicrophorus vespilloides. We found that inbred offspring had lower survival than outbred ones confirming that there was inbreeding depression. Furthermore, seniors (older larvae) grew to a larger size and had higher survival than juniors (younger larvae), confirming that there were age‐based competitive asymmetries. Nevertheless, there was no evidence that direct competition between inbred and outbred larvae exacerbated inbreeding depression, no evidence that inbreeding depression was more severe in juniors and no evidence that inbred juniors suffered disproportionately due to competition from outbred seniors. Our results suggest that direct competition between inbred and outbred individuals does not necessarily exacerbate inbreeding depression and that inbred individuals are not always more sensitive to poor and stressful conditions than outbred ones.  相似文献   

4.
Recent meta-analyses conducted across a broad range of taxa have demonstrated a strong linear relationship between the change in magnitude of inbreeding depression under stress and stress level, measured as fitness loss in outbred individuals. This suggests that a general underlying response may link stress and inbreeding depression. However, this relationship is based primarily on laboratory data, and it is unknown whether natural environments with multiple stressors and fluctuating stress levels alter how stress affects inbreeding depression. To test whether the same pattern persists in the field, we investigated the effect of seasonal variation on stress level and inbreeding depression in a 3-year field study measuring the productivity of captive populations of inbred and outbred Drosophila melanogaster. We found cold winter temperatures were most stressful and induced the greatest inbreeding depression. Furthermore, these data, collected under natural field conditions, conformed to the same predictive linear relationship seen in Drosophila laboratory studies, with inbreeding depression increasing by 0.17 lethal equivalents for every 10 per cent increase in stress level. Our results suggest that under natural conditions stress level is a primary determinant of the magnitude of inbreeding depression and should be considered when assessing extinction vulnerability in small populations.  相似文献   

5.
Stressful environments are often said to increase the expression of inbreeding depression. Alternatively, Crow's "opportunity for selection" (the squared phenotypic coefficient of variation) sets a limit to how much selection can occur, constraining the magnitude of inbreeding depression. To test these hypotheses, we planted self- and cross-fertilized seeds of Brassica rapa into a factorial experiment that varied plant density and saline watering stresses. We then repeated the experiment, reducing the salt concentration. We observed considerable inbreeding depression, particularly for survival in the first experiment and growth in the second. Both stresses independently depressed plant performance. Families differed in their amounts of inbreeding depression and reaction norms across environments. Outcrossed progeny were sometimes more variable. Stresses had small and inconsistent effects on inbreeding depression and, when significant, tended to diminish it. Levels of phenotypic variability often predicted whether inbreeding depression would increase or decrease across environments and were particularly effective in predicting which traits display the most inbreeding depression. Thus, we find little support for the stress hypothesis and mixed support for the phenotypic variability hypothesis. Variable levels of phenotypic variation provide a parsimonious explanation for shifts in inbreeding depression that should be tested before invoking more complex hypotheses.  相似文献   

6.
Inbreeding depression has become a central theme in evolutionary biology and is considered to be a driving force for the evolution of reproductive morphology, physiology, behavior, and mating systems. Despite the overwhelming body of empirical work on the reproductive consequences of inbreeding, relatively little is known on whether inbreeding depresses male and female fitness to the same extent. However, sex‐specific inbreeding depression has been argued to affect the evolution of selfing rates in simultaneous hermaphrodites and provides a powerful approach to test whether selection is stronger in males than in females, which is predicted to be the consequence of sexual selection. We tested for sex‐specific inbreeding depression in the simultaneously hermaphroditic freshwater snail Physa acuta by comparing the reproductive performance of both sex functions between selfed and outcrossed focal individuals under different levels of male–male competition. We found that inbreeding impaired both male and female reproductive success and that the magnitude of male inbreeding depression exceeded female inbreeding depression when the opportunity for sperm competition was highest. Our study provides the first evidence for sex‐specific inbreeding depression in a hermaphroditic animal and highlights the importance of considering the level of male–male competition when assessing sex differences in inbreeding depression.  相似文献   

7.
Accurate estimates of inbreeding depression are necessary in order to predict the evolutionary dynamics of a population, but many studies estimate inbreeding depression based solely on components of female function such as fruit set, seed set, and seed quality. Because total fitness is achieved through both male and female functions in hermaphroditic plants, estimates of both male and female fitness are needed to estimate accurately the magnitude of inbreeding depression. Seedlings of a wild gourd, Cucurbita pepo subsp. texana, with coefficients of inbreeding of 0 and 0.75 were planted in an experimental garden, and several components of male and female fitness were measured over the course of the growing season. Fitness in inbred plants was confounded by both maternal and genetic inbreeding effects. Inbred individuals produced significantly fewer fruits than outcrossed individuals, and percentage germination of seeds from inbred individuals was significantly lower than seeds from outcrossed individuals. Inbred plants also produced significantly fewer staminate flowers and marginally fewer and smaller pollen grains per flower. Pollen from inbred plants also grew significantly more slowly in vitro than pollen from outcrossed plants. Multiplicative estimates of inbreeding depression revealed inbreeding depression for both male and female functions in wild gourd, but inbreeding depression through female function was stronger than inbreeding depression through male function.  相似文献   

8.
Mallet MA  Chippindale AK 《Heredity》2011,106(6):994-1002
Stronger selection on males has the potential to lower the deleterious mutation load of females, reducing the cost of sex. However, few studies have directly quantified the strength of selection for both sexes. As the magnitude of inbreeding depression (ID) is related to the strength of selection, we measured the cost of inbreeding for both males and females in a laboratory population of Drosophila melanogaster. Using a novel technique for inbreeding, we found significant ID for both juvenile viability and adult fitness in both sexes. The genetic variation responsible for this depression in fitness appeared to be recessive for adult fitness (h=0.11) and partially additive for juvenile viability (h=0.29). ID was identical across the sexes in terms of juvenile viability but was significantly more deleterious for males than females as adults, even though female X-chromosome homogamety should predispose them to a higher inbreeding load. We estimated the strength of selection on adult males to be 1.24 greater than on adult females, and this appears to be a consequence of selection arising from competition for mates. Combined with the generally positive intersexual genetic correlation for inbred lines, our results suggest that the mutation load of sexual females could be meaningfully reduced by stronger selection acting on males.  相似文献   

9.
As populations decline to levels where reproduction among close genetic relatives becomes more probable, subsequent increases in homozygous recessive deleterious expression and/or loss of heterozygote advantage can lead to inbreeding depression. Here, we measure how inbreeding across replicate lines of the flour beetle Tribolium castaneum impacts on male reproductive fitness in the absence or presence of male–male competition. Effects on male evolution from mating pattern were removed by enforcing monogamous mating throughout. After inbreeding across eight generations, we found that male fertility in the absence of competition was unaffected. However, we found significant inbreeding depression of sperm competitiveness: non-inbred males won 57 per cent of fertilizations in competition, while inbred equivalents only sired 42 per cent. We also found that the P2 ‘offence’ role in sperm competition was significantly more depressed under inbreeding than sperm ‘defence’ (P1). Mating behaviour did not explain these differences, and there was no difference in the viability of offspring sired by inbred or non-inbred males. Sperm length variation was significantly greater in the ejaculates of inbred males. Our results show that male ability to achieve normal fertilization success was not depressed under strong inbreeding, but that inbreeding depression in these traits occurred when conditions of sperm competition were generated.  相似文献   

10.
García-Dorado A 《Genetics》2012,190(4):1461-1476
The joint consequences of inbreeding, natural selection, and deleterious mutation on mean fitness after population shrinkage are of great importance in evolution and can be critical to the conservation of endangered populations. I present simple analytical equations that predict these consequences, improving and extending a previous heuristic treatment. Purge is defined as the "extra" selection induced by inbreeding, due to the "extra" fitness disadvantage (2d) of homozygotes for (partially) recessive deleterious alleles. Its effect is accounted for by using, instead of the classical inbreeding coefficient f, a purged inbreeding coefficient g that is weighed by the reduction of the frequency of deleterious alleles caused by purging. When the effective size of a large population is reduced to a smaller stable value N (with Nd ≥ 1), the purged inbreeding coefficient after t generations can be predicted as g(t) ≈ [(1 - 1/2N) g(t)(-1) + 1/2N](1 - 2d f(t)(-1)), showing how purging acts upon previously accumulated inbreeding and how its efficiency increases with N. This implies an early fitness decay, followed by some recovery. During this process, the inbreeding depression rate shifts from its ancestral value (δ) to that of the mutation-selection-drift balance corresponding to N (δ*), and standard selection cancels out the inbreeding depression ascribed to δ*. Therefore, purge and inbreeding operate only upon the remaining δ - δ*. The method is applied to the conservation strategy in which family contributions to the breeding pool are equal and is extended to make use of genealogical information. All these predictions are checked using computer simulation.  相似文献   

11.
In this investigation, we have collected family-structured data from a partly self-compatible, outcrossing population of Brassica cretica to estimate and compare the effects of one-generation selfing on different types of characters. Inbreeding not only depressed characters that should be positively correlated with fitness irrespective of habitat, e.g. germinability, leaf number and inflorescence size, but also resulted in later flowering, smaller and more asymmetric flowers, and an increased production of basal branches. Population-level estimates of inbreeding depression were similar in magnitude to estimates reported in other wild plant species. There was a tendency for direct components of fitness to exhibit a stronger response to inbreeding than other characters, but only when the differences between selfed and outbred offspring were measured in standard deviation units. Family-level estimates of inbreeding depression were weakly correlated across characters. Given these and other observations, we hypothesize that the genetic basis of inbreeding depression varies across the life cycle and that changes in local inbreeding will lead to shifts in the mean phenotypes of B. cretica populations. However, judging from data on current levels of population divergence, quite large changes in inbreeding will be required to influence large-scale patterns of variation in this species.  © 2002 The Linnean Society of London. Biological Journal of the Linnean Society , 2002, 76 , 317–325.  相似文献   

12.
Inbreeding results from matings between relatives and can cause a reduction in offspring fitness, known as inbreeding depression. Previous work has shown that a wide range of environmental stresses, such as extreme temperatures, starvation and parasitism, can exacerbate inbreeding depression. It has recently been argued that stresses due to intraspecific competition should have a stronger effect on the severity of inbreeding depression than stresses due to harsh physical conditions. Here, we tested whether an increase in the intensity of sibling competition can exacerbate inbreeding depression in the burying beetle Nicrophorus vespilloides. We used a 2 × 3 factorial design with offspring inbreeding status (outbred or inbred) and brood size (5, 20, or 40 larvae) as the two factors. We found a main effect of inbreeding status, as inbred larvae had lower survival than outbred larvae, and a main effect of brood size, as larvae in large broods had lower survival and mass than larvae in medium‐sized broods. However, there was no effect of the interaction between inbreeding status and brood size, suggesting that sibling competition did not influence the severity of inbreeding depression. Since we focused on sibling competition within homogeneous broods of either inbred or outbred larvae, we cannot rule out possible effects of sibling competition on inbreeding depression in mixed paternity broods comprising of both inbred and outbred offspring. More information on whether and when sibling competition might influence inbreeding depression can help advance our understanding of the causes underlying variation in the severity of inbreeding depression.  相似文献   

13.
Inbreeding depression is a major selective factor acting to maintain outcrossing in hermaphroditic plants. Recently it has been shown that environmental conditions may greatly affect the levels of inbreeding depression. In this study, the effects of intraspecific competition, from either crossed or inbred progeny, and plant density on the expression of inbreeding depression were estimated for the allogamous colonizing plant Crepis sancta (Asteraceae). The population used in this experiment showed a very high outcrossing rate (t = 0.99). Inbreeding depression was measured for germination, survival to reproduction, number of capitula, and a multiplicative fitness estimate. We found that inbreeding depression on survival, the number of capitula, and total fitness was the greatest when inbred plants compete with outbred plants. The effect of density on inbreeding depression was less evident. The major implication of our study is that the relative fitness of selfed progeny is strongly influenced by the type of competitors (outbred or inbred). These results support the hypothesis that inbreeding depression varies according to the density and frequency of outbred plants and suggest that it could be considered as a density- and frequency-dependent phenomenon.  相似文献   

14.
Evolutionary and conservation biologists have a long-standing interest in the consequences of inbreeding. It is generally recognized that inbred individuals may experience reduced fitness or inbreeding depression. By the same token, relatively outbred individuals can have greater than average fitness, i.e. heterosis. However, nearly all of the empirical evidence for inbreeding depression comes from laboratory or domestic species. Inbreeding depression and heterosis are difficult to detect in natural populations due to the difficulties in establishing pedigrees. An alternative method is to correlate heterozygosity, which is measured using genetic markers, with a trait related to fitness. The typically studied traits, such as juvenile survival and growth rates, either cover only early life or are weakly correlated with lifetime breeding success (LBS). In this paper we show that heterozygosity is positively associated with male and female adult LBS in a wild population of red deer (Cervus elaphus) on the Isle of Rum, Scotland. To the authors' knowledge, this is the first time that inbreeding depression and/or heterosis have been detected for a trait highly correlated with overall fitness in both sexes in a wild population.  相似文献   

15.
Harmful effects arising from matings between relatives (inbreeding) is a long‐standing observation that is well founded in theory. Empirical evidence for inbreeding depression in natural populations is however rare because of the challenges of assembling pedigrees supplemented with fitness traits. We examined the occurrence of inbreeding and subsequent inbreeding depression using a unique data set containing a genetically verified pedigree with individual fitness traits for a critically endangered arctic fox (Vulpes lagopus) population. The study covered nine years and was comprised of 33 litters with a total of 205 individuals. We recorded that the present population was founded by only five individuals. Over the study period, the population exhibited a tenfold increase in average inbreeding coefficient with a final level corresponding to half‐sib matings. Inbreeding mainly occurred between cousins, but we also observed two cases of full‐sib matings. The pedigree data demonstrated clear evidence of inbreeding depression on traditional fitness traits where inbred individuals displayed reduced survival and reproduction. Fitness traits were however differently affected by the fluctuating resource abundande. Inbred individuals born at low‐quality years displayed reduced first‐year survival, while inbred individuals born at high‐quality years were less likely to reproduce. The documentation of inbreeding depression in fundamental fitness traits suggests that inbreeding depression can limit population recovery. Introducing new genetic material to promote a genetic rescue effect may thus be necessary for population long‐term persistence.  相似文献   

16.
Little is known about how inbreeding alters selection on ecologically relevant traits. Inbreeding could affect selection by changing the distribution of traits and/or fitness, or by changing the causal effect of traits on fitness. Here, I test whether selection on egg size varies with the degree of inbreeding in the seed‐feeding beetle, Stator limbatus. There was strong directional selection favoring large eggs for both inbred and outbred beetles; offspring from smaller eggs had lower survivorship on a resistant host. Inbreeding treatment had no effect on the magnitude of selection on egg size; all selection coefficients were between ~0.078 and 0.096, regardless of treatment. However, inbreeding depression declined with egg size; this is because the difference in fitness between inbreds and outbreds did not change, but average fitness increased, with egg size. A consequence of this is that populations that differ in mean egg size should experience different magnitudes of inbreeding depression (all else being equal) and thus should differ in the magnitude of selection on traits that affect mating, simply as a consequence of variation in egg size. Also, maternal traits (such as egg size) that mediate stressfulness of the environment for offspring can mediate the severity of inbreeding depression.  相似文献   

17.
The strength of the self-incompatibility (SI) response in Senecio squalidus was measured across its British range. Geographic variation in SI was investigated and the extent and inheritance of pseudo-self-compatibility (PSC) and inbreeding depression were determined. Mean self-fruit-set per capitulum was calculated for individuals and sample populations. The heritability of PSC and the magnitude of inbreeding depression were assessed by comparing selfing rates and fitness trait values between SI and PSC parent-progeny lines. SI was found to be strongly expressed in S. squalidus throughout its British range, with only 3.1% of the individuals sampled showing PSC. This PSC had relatively low heritability with stronger expression of SI in selfed progeny relative to PSC parents. Inbreeding depression was shown to be great in S. squalidus, with mean life history stage values ranging from 0.18 to 0.25. The strength of SI in S. squalidus appears not to have weakened in response to its rapid colonization of Britain. The avoidance of inbreeding depression is likely to be the primary factor maintaining strong SI in this successful colonizing species.  相似文献   

18.
Synergistic epistasis for fitness is often assumed in models of how selection acts on the frequency and distribution of deleterious mutations. Evidence for synergistic epistasis would exist if the logarithm of fitness declines more quickly with number of deleterious mutations, than predicted by a linear decline. This can be studied indirectly by quantifying the effect of different levels of inbreeding on fitness. Here, six sets (different genetic backgrounds) of three increasingly inbred Daphnia magna clones were used to assess their relative fitness according to changes in frequency in a competition experiment against a tester clone. A novelty of the mating procedure was that the inbreeding coefficients (F) of the three clones belonging to each set increased in steps of 0.25 independent of the (unknown) inbreeding coefficient of the common ancestor. The equal increase of the inbreeding coefficients is important, because deviations influence the quantification of inbreeding depression, its variance and the detection of epistasis. In a simple mathematical model we show that when working with a partially inbred population inbreeding depression is underestimated, the variance of fitness is increased, and the detection of epistasis more difficult. Further, to examine whether an interaction between inbreeding and parasitism exists, each inbred clone was tested with and without a microsporidium infection (Octosporea bayeri). We found a nonlinear decrease of the logarithm of fitness across the three levels of inbreeding, indicating synergistic epistasis. The interaction term between parasitism and inbreeding was not significant. Our results suggest that deleterious mutations may be purged effectively once the level of inbreeding is high, but that parasitism seems not to influence this effect.  相似文献   

19.
Plant mating systems represent an evolutionary and ecological trade‐off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self‐incompatibility systems exhibit dominance interactions at the S‐locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S‐locus. We investigated this trade‐off by estimating mate availability and biparental inbreeding depression in wild radish from five different populations across Australia. We found dominance interactions among S‐alleles increased mate availability relative to estimates based on individuals that did not share S‐alleles. Twelve of the sixteen fitness variables were significantly reduced by inbreeding. For all the three life‐history phases evaluated, self‐fertilized offspring suffered a greater than 50% reduction in fitness, while full‐sib and half‐sib offspring suffered a less than 50% reduction in fitness. Theory indicates that fitness costs greater than 50% can result in an evolutionary trajectory toward a stable state of self‐incompatibility (SI). This study suggests that dominance interactions at the S‐locus provide a possible third stable state between SI and SC where biparental inbreeding increases mate availability with relatively minor fitness costs. This strategy allows weeds to establish in new environments while maintaining a functional SI system.  相似文献   

20.
The shape of the fitness function relating the decline in fitness with coefficient of inbreeding (f) can provide evidence concerning the genetic basis of inbreeding depression, but few studies have examined inbreeding depression across a range of f using noncultivated species. Futhermore, studies have rarely examined the effects of inbreeding depression in the maternal parent on offspring fitness. To estimate the shape of the fitness function, we examined the relationship between f and fitness across a range off from 0.000 to 0.875 for components of both male and female fitness in Cucurbita pepo ssp. texana. Each measure of female fitness declined with f, including pistillate flower number, fruit number, seed number per fruit, seed mass per fruit, and percentage seed germination. Several aspects of male fitness also declined with f, including staminate flower number, pollen number per flower, and the number of days of flowering, although cumulative inbreeding depression was less severe for male (0.34) than for female function (0.39). Fitness tended to decline linearly with f between f = 0.00 and f = 0.75 for most traits and across cumulative lifetime fitness (mean = 0.66), suggesting that individual genes causing inbreeding depression are additive and the result of many alleles of small effect. However, most traits also showed a small reduction in inbreeding depression between f = 0.75 and f = 0.875, and evidence of purging or diminishing epistasis was found for in vitro pollen-tube growth rate. To examine inbreeding depression as a maternal effect, we performed outcross pollinations on f = 0.0 and f = 0.5 mothers and found that depression due to maternal inbreeding was 0.07, compared to 0.10 for offspring produced through one generation of selfing. In at least some families, maternal inbreeding reduced fruit number, seed number and mass, staminate flower number, pollen diameter, and pollen-tube growth rate. Collectively these results suggest that, while the fitness function appears to be largely linear for most traits, maternal effects may compound the effects of inbreeding depression in multigenerational studies, though this may be partially offset by purging or diminishing epistasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号