首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of ApoE gene deletion on the anxiety state has not been previously investigated. The elevated plus maze was used in this study to determine differences in anxiety-related behavior between apoE-deficient and wild type C57BL/6 mice. The apoE-deficient mice demonstrated less anxiety on the elevated plus maze by spending more time in the open arms of the elevated plus maze compared to wild type mice (p<0.001). Additionally, female apoE-deficient mice visited the open arm of the maze more often than their apoE-deficient male counterpart (p<0.05). The anxiety state and/or sex are possible variables to be considered when designing physiological and/or behavioral studies involving mice that are apoE-deficient.  相似文献   

2.
Brain lesions in Alzheimer's disease (AD) include amyloid plaques made of Aβ peptides and neurofibrillary tangles composed of hyperphosphorylated tau protein with synaptic and neuronal loss and neuroinflammation. Aβ oligomers can trigger tau phosphorylation and neuronal alterations through activation of neuronal kinases leading to progressive cognitive decline. PKR is a ubiquitous pro‐apoptotic serine/threonine kinase, and levels of activated PKR are increased in AD brains and AD CSF. In addition, PKR regulates negatively memory formation in mice. To assess the role of PKR in an AD in vivo model, we crossed 5xFAD transgenic mice with PKR knockout (PKRKO) mice and we explored the contribution of PKR on cognition and brain lesions in the 5xFAD mouse model of AD as well as in neuron–microglia co‐cultures exposed to the innate immunity activator lipopolysaccharide (LPS). Nine‐month‐old double‐mutant mice revealed significantly improved memory consolidation with the new object location test, starmaze test, and elevated plus maze test as compared to 5xFAD mice. Brain amyloid accumulation and BACE1 levels were statistically decreased in double‐mutant mice. Apoptosis, neurodegeneration markers, and synaptic alterations were significantly reduced in double‐mutant mice as well as neuroinflammation markers such as microglial load and brain cytokine levels. Using cocultures, we found that PKR in neurons was essential for LPS microglia‐induced neuronal death. Our results demonstrate the clear involvement of PKR in abnormal spatial memory and brain lesions in the 5xFAD model and underline its interest as a target for neuroprotection in AD.  相似文献   

3.
Anxiety is known to be influenced by both adverse childhood experiences and genetic susceptibility factors. A polymorphism in the brain‐derived neurotrophic factor (BDNF) gene modulates the association between adverse early experiences and risk for anxiety and depression in adulthood. An animal model of this gene‐by‐environment risk factor is lacking. Using two different early environmental manipulations, we found that a heterozygous null mutation in the mouse BDNF gene moderated the long‐term effect of maternal care on innate anxiety behavior. Although changes in maternal care were associated with mild changes in anxiety in wild‐type mice, this effect was magnified in heterozygous null BDNF mice with high‐ and low‐maternal care associated with low and high levels, respectively, of avoidance behavior as measured in the open field and elevated plus maze tests. These data argue for an increased sensitivity to early environmental influences of mice with reduced BDNF function and support the important role of this neurotrophic factor in the developmental plasticity of brain circuits controlling anxiety.  相似文献   

4.
高架十字迷宫(the elevated plus maze,EPM)是研究小鼠焦虑行为的重要实验,本文介绍了EPM的原理和实验步骤。将小鼠置于开臂闭臂接合处,面向开臂,通过录像记录分析小鼠在EPM的表现。结果发现,两种小鼠均可成功完成实验,C57小鼠在EPM内较不活跃,闭臂滞留时间占总时间百分比显著高于129Sv小鼠。应用EPM可以简单直观地分析小鼠焦虑行为。  相似文献   

5.
The increased use of mobile phones has generated public concern about the impact of radiofrequency electromagnetic fields (RF‐EMF) on health. In the present study, we investigated whether RF‐EMFs induce molecular changes in amyloid precursor protein (APP) processing and amyloid beta (Aβ)‐related memory impairment in the 5xFAD mouse, which is a widely used amyloid animal model. The 5xFAD mice at the age of 1.5 months were assigned to two groups (RF‐EMF‐ and sham‐exposed groups, eight mice per group). The RF‐EMF group was placed in a reverberation chamber and exposed to 1950 MHz electromagnetic fields for 3 months (SAR 5 W/kg, 2 h/day, 5 days/week). The Y‐maze, Morris water maze, and novel object recognition memory test were used to evaluate spatial and non‐spatial memory following 3‐month RF‐EMF exposure. Furthermore, Aβ deposition and APP and carboxyl‐terminal fragment β (CTFβ) levels were evaluated in the hippocampus and cortex of 5xFAD mice, and plasma levels of Aβ peptides were also investigated. In behavioral tests, mice that were exposed to RF‐EMF for 3 months did not exhibit differences in spatial and non‐spatial memory compared to the sham‐exposed group, and no apparent change was evident in locomotor activity. Consistent with behavioral data, RF‐EMF did not alter APP and CTFβ levels or Aβ deposition in the brains of the 5xFAD mice. These findings indicate that 3‐month RF‐EMF exposure did not affect Aβ‐related memory impairment or Aβ accumulation in the 5xFAD Alzheimer's disease model. Bioelectromagnetics. 37:391–399, 2016. © 2016 The Authors Bioelectromagnetics published by Wiley Periodicals, Inc. on behalf of Bioelectromagnetics Society.  相似文献   

6.
Sensing external stimulation is crucial for central processing in the brain and subsequent behavioral expression. Although sensory alteration or deprivation may result in behavioral changes, most studies related to the control of behavior have focused on central mechanisms. Here we created a sensory deficit model of mice lacking acid‐sensing ion channel 3 (Asic3?/?) to probe behavioral alterations. ASIC3 is predominately distributed in the peripheral nervous system. RT‐PCR and immunohistochemistry used to examine the expression of Asic3 in the mouse brain showed near‐background mRNA and protein levels of ASIC3 throughout the whole brain, except for the sensory mesencephalic trigeminal nucleus. Consistent with the expression results, Asic3 knockout had no effect on synaptic plasticity of the hippocampus and the behavioral tasks of motor function, learning and memory. In anxiety behavior tasks, Asic3?/? mice spent more time in the open arms of an elevated plus maze than did their wild‐type littermates. Asic3?/? mice also displayed less aggressiveness toward intruders but more stereotypic repetitive behaviors during resident–intruder testing than did wild‐type littermates. Therefore, loss of ASIC3 produced behavioral changes in anxiety and aggression in mice, which suggests that ASIC3‐dependent sensory activities might relate to the central process of emotion modulation.  相似文献   

7.
Although the mouse genome is now completely sequenced, the functions of most of the genes expressed in the brain are not known. The influence of a given gene on a specific behavior can be determined by behavioral analysis of mutant mice. If a target gene is expressed in the brain, behavioral phenotype of the mutant mice could elucidate the genetic mechanism of normal behaviors. The elevated plus maze test is one of the most widely used tests for measuring anxiety-like behavior. The test is based on the natural aversion of mice for open and elevated areas, as well as on their natural spontaneous exploratory behavior in novel environments. The apparatus consists of open arms and closed arms, crossed in the middle perpendicularly to each other, and a center area. Mice are given access to all of the arms and are allowed to move freely between them. The number of entries into the open arms and the time spent in the open arms are used as indices of open space-induced anxiety in mice. Unfortunately, the procedural differences that exist between laboratories make it difficult to duplicate and compare results among laboratories. Here, we present a detailed movie demonstrating our protocol for the elevated plus maze test. In our laboratory, we have assessed more than 90 strains of mutant mice using the protocol shown in the movie. These data will be disclosed as a part of a public database that we are now constructing. Visualization of the protocol will promote better understanding of the details of the entire experimental procedure, allowing for standardization of the protocols used in different laboratories and comparisons of the behavioral phenotypes of various strains of mutant mice assessed using this test.  相似文献   

8.
Hearing dysfunction has been associated with Alzheimer's disease (AD) in humans, but there is little data on the auditory function of mouse models of AD. Furthermore, characterization of hearing ability in mouse models is needed to ensure that tests of cognition that use auditory stimuli are not confounded by hearing dysfunction. Therefore, we assessed acoustic startle response and pre‐pulse inhibition in the double transgenic 5xFAD mouse model of AD from 3–4 to 16 months of age. The 5xFAD mice showed an age‐related decline in acoustic startle as early as 3–4 months of age. We subsequently tested auditory brainstem response (ABR) thresholds at 4 and 13–14 months of age using tone bursts at frequencies of 2–32 kHz. The 5xFAD mice showed increased ABR thresholds for tone bursts between 8 and 32 kHz at 13–14 months of age. Finally, cochleae were extracted and basilar membranes were dissected to count hair cell loss across the cochlea. The 5xFAD mice showed significantly greater loss of both inner and outer hair cells at the apical and basal ends of the basilar membrane than wild‐type mice at 15–16 months of age. These results indicate that the 5xFAD mouse model of AD shows age‐related decreases in acoustic startle responses, which are at least partially due to age‐related peripheral hearing loss. Therefore, we caution against the use of cognitive tests that rely on audition in 5xFAD mice over 3–4 months of age, without first confirming that performance is not confounded by hearing dysfunction.  相似文献   

9.
Genotype-dependent behavioral effects were demonstrated in BALB/c, C57BL/6J [Russian character: see text] DBA/2J mice after injections of nootropic drug Noopept. In an elevated plus maze, drug administration induced an increase in the number of enterings into bright arms in BALB/c mice, whereas the opposite effect was observed in C57BL/6J. After the Noopept administration, animals from all the three strains increased the number of active avoidance reactions in stress-inducing slip-funnel test. A significant intensification of exploration behavior was observed in a closed plus-maze in BALB/c and C57BL/6J. The Noopept affected weakly or had no effect on the behavior of DBA/2J mice.  相似文献   

10.
11.
Alzheimer's disease (AD) is a neurodegenerative disorder that leads to age‐related cognitive and sensori‐motor dysfunction. There is an increased understanding that motor dysfunction contributes to overall AD severity, and a need to ameliorate these impairments. The 5xFAD mouse develops the neuropathology, cognitive and motor impairments observed in AD, and thus may be a valuable animal model to study motor deficits in AD. Therefore, we assessed age‐related changes in motor ability of male and female 5xFAD mice from 3 to 16 months of age, using a battery of behavioral tests. At 9‐10 months, 5xFAD mice showed reduced body weight, reduced rearing in the open‐field and impaired performance on the rotarod compared to wild‐type controls. At 12‐13 months, 5xFAD mice showed reduced locomotor activity on the open‐field, and impaired balance on the balance beam. At 15‐16 months, impairments were also seen in grip strength. Although sex differences were observed at specific ages, the development of motor dysfunction was similar in male and female mice. Given the 5xFAD mouse is commonly on a C57BL/6 × SJL hybrid background, a subset of mice may be homozygous recessive for the Dysf im mutant allele, which leads to muscular weakness in SJL mice and may exacerbate motor dysfunction. We found small effects of Dysf im on motor function, suggesting that Dysf im contributes little to motor dysfunction in 5xFAD mice. We conclude that the 5xFAD mouse may be a useful model to study mechanisms that produce motor dysfunction in AD, and to assess the efficacy of therapeutics on ameliorating motor impairment.  相似文献   

12.
The activity‐regulated cytoskeleton‐associated protein (Arc, also known as Arg3.1) regulates glutamatergic synapse plasticity and has been linked to neuropsychiatric illness; however, its role in behaviors associated with mood and anxiety disorders remains unclear. We find that stress upregulates Arc expression in the adult mouse nucleus accumbens (NAc)—a brain region implicated in mood and anxiety behaviors. Global Arc knockout mice have altered AMPAR‐subunit surface levels in the adult NAc, and the Arc‐deficient mice show reductions in anxiety‐like behavior, deficits in social novelty preference, and antidepressive‐like behavior. Viral‐mediated expression of Arc in the adult NAc of male, global Arc KO mice restores normal levels of anxiety‐like behavior in the elevated plus maze (EPM). Consistent with this finding, viral‐mediated reduction of Arc in the adult NAc reduces anxiety‐like behavior in male, but not female, mice in the EPM. NAc‐specific reduction of Arc also produced significant deficits in both object and social novelty preference tasks. Together our findings indicate that Arc is essential for regulating normal mood‐ and anxiety‐related behaviors and novelty discrimination, and that Arc's function within the adult NAc contributes to these behavioral effects.  相似文献   

13.
Male mice lacking estrogen receptor alpha (ERalphaKO) show reduced social behaviors. We hypothesized that this might be due to either socially elicited or generalized anxiety. Male ERalphaKOs and wild type (WT) mice were given a series of behavioral tests: elevated plus maze, T-maze, and social recognition. Each test included a social dimension by exposing males to ovariectomized (OVX) females. In addition plasma concentrations of corticosterone were measured, and open field activity was assessed. In the elevated plus maze, WT males exposed to an OVX female 1 min prior to the test were more anxious than WT controls. ERalphaKO males showed anxiety in this test whether or not they were preexposed to a female. In the T-maze, WT males increased exploration of a novel arm when it contained an OVX female. The presence or absence of a female in a novel arm did not affect behavior of ERalphaKO males. In social recognition tests, ERalphaKO males spent less time than WT littermates investigating an OVX female that was repeatedly introduced into their home cage. On the final trial, when a novel female was introduced, WT males increased their chemo-investigation but ERalphaKOs did not. Plasma corticosterone levels were lower in ERalphaKO than in WT males when plasma was taken directly after a brief (control) cage disturbance. In the open field WT and ERalphaKO males behaved essentially the same. Taken together, the results of these experiments suggest the ERalphaKO males avoid contact with other conspecifics, perhaps due to an inability to be aroused by social cues.  相似文献   

14.
Activation of adenosine receptors in the brain reduces anxiety-like behavior in animals and humans. Because nucleoside transporters regulate adenosine levels, we used mice lacking the type 1 equilibrative nucleoside transporter (ENT1) to investigate whether ENT1 contributes to anxiety-like behavior. The ENT1 null mice spent more time in the center of an open field compared with wild-type littermates. In the elevated plus maze, ENT1 null mice entered more frequently into and spent more time exploring the open arms. The ENT1 null mice also spent more time exploring the light side of a light-dark box compared with wild-type mice. Microinjection of an ENT1-specific antagonist, nitrobenzylthioinosine (nitrobenzylmercaptopurine riboside), into the amygdala of C57BL/6J mice reduced anxiety-like behavior in the open field and elevated plus maze. These findings show that amygdala ENT1 modulates anxiety-like behavior. The ENT1 may be a drug target for the treatment of anxiety disorders.  相似文献   

15.
Previous research demonstrated excessive decreases in reward sensitivity and increases in harm avoidance in depressed individuals. These results straightly lead to a hypothesis that depressed patients should avoid novelty or express reduced novelty-seeking behavior. Nevertheless, literature in this regard is inconsistent. Furthermore, whether the potentially altered novelty-associated behavior is dependent on changed anxiety/fear or related to altered goal-directed approaching tendency is unclear. Here, we tested novel object-approaching behavior in a free-exploration paradigm in chronic mild stress (CMS)-induced anhedonic and stress-resistant rats respectively. Other CMS-induced, emotional behaviors were also examined in a battery of behavioral tests including novel cage, exploration, locomotor activity and elevated plus maze (EPM). We found that compared with controls, stress-resistant rats who consistently showed lower anxiety level in EPM (time in open arms) and, open-field (OF) test (time in central area) showed no sign of enhanced novel object approaching behavior. To the contrary, the anhedonic ones who did not express any sign of reduced anxiety showed paradoxically intensified novelty-approaching behavior. We concluded that reduced anxiety would not necessarily lead to enhanced novelty-seeking behavior; anhedonia coexists with anxiety-independent, increased novelty-seeking behavior. The salient paradox of coexistence of anhedonia and increased novelty-seeking behavior was critically discussed.  相似文献   

16.
Behavioral effects of prenatal folate deficiency in mice   总被引:1,自引:0,他引:1  
BACKGROUND: Folate supplementation decreases the incidence of birth defects such as neural tube defects (NTDs). We and others have shown that gestational dietary folate deficiency that does not produce overt NTDs can alter fetal neural histology. Accordingly, murine offspring were examined for the possible functional consequences of prenatal folate deficiency. METHODS: CD-1 mice were fed a diet of chow containing 400, 600, or 1200 nmol of folic acid/kg of chow for eight weeks prior to breeding and until GD18, at which time all dams were placed on folate-replete chow. Behavioral tests of male and female offspring included righting reflex, negative geotaxis, forelimb hanging, motor coordination, open field activity, and elevated plus maze activity. RESULTS: Of greatest significance, the adult offspring that were prenatally folate-deficient exhibited more anxiety-related behavior in the elevated plus maze. Offspring of the 400 nmol of folic acid/kg of chow diet group exhibited significantly shorter durations in the open arms and longer durations in the closed arms. Further, these two behaviors were dose-related. There was also a trend for the prenatally folate-deficient adult mice to exhibit more thigmotaxis (wall-hugging) behavior in the open field, entering the central area less frequently than controls. There were few other differences in tested behaviors between folate-deficient and folate-replete mice. CONCLUSIONS: Prenatal folate deficiency that is repleted at birth can manifest later with increased anxiety 9-12 weeks after birth.  相似文献   

17.
This study examined emotionality, activity, learning and memory, as well as the influence of emotionality and activity on learning and memory performance in C57BL/6 and DBA/2 mice using a mouse-test battery. DBA/2 mice performed more poorly than C57BL/6 mice in complex learning tasks such as the water maze and object recognition tasks. In contrast, C57BL/6 mice showed attenuated habituation to novelty in the open field apparatus and poorer performance in the step-down passive avoidance task. The C57BL/6 mice were less exploratory and more anxious than the DBA/2 mice. The anxiety score (open arm entries in the elevated plus maze) was significantly correlated with all measures of learning and memory in the object recognition task, and some measures in the passive avoidance and water maze tasks. Analysis of covariance (with open arm entries as a covariate) revealed that some measures on trial 1 of the object recognition task, but not the memory scores on trial 2, were confounded by anxiety. No confounding factors of anxiety were found in the water maze or passive avoidance tasks. Similar results were obtained with the activity scores (line crossing and rearing in the open field). In conclusion, strain differences in activity and anxiety did not account for strain differences in learning and memory performance of C57BL/6 and DBA/2 mice. Nonetheless, the importance of using complete behavioural test batteries should be stressed to ensure that strain differences in learning and memory tasks are not confounded by non-cognitive factors.  相似文献   

18.
Maternal care is an indispensable behavioral component necessary for survival and reproductive success in mammals, and postpartum maternal behavior is mediated by an incompletely understood complex interplay of signals including effects of epigenetic regulation. We approached this issue using our recently established mice with targeted deletion of heterochromatin protein 1 binding protein 3 (HP1BP3), which we found to be a novel epigenetic repressor with critical roles in postnatal growth. Here, we report a dramatic reduction in the survival of pups born to Hp1bp3?/? deficient mouse dams, which could be rescued by co‐fostering with wild‐type dams. Hp1bp3?/? females failed to retrieve both their own pups and foster pups in a pup retrieval test, and showed reduced anxiety‐like behavior in the open‐field and elevated‐plus‐maze tests. In contrast, Hp1bp3?/? females showed no deficits in behaviors often associated with impaired maternal care, including social behavior, depression, motor coordination and olfactory capability; and maintained unchanged anxiety‐associated hallmarks such as cholinergic status and brain miRNA profiles. Collectively, our results suggest a novel role for HP1BP3 in regulating maternal and anxiety‐related behavior in mice and call for exploring ways to manipulate this epigenetic process.  相似文献   

19.
Smokers often report an anxiolytic effect of cigarettes. In addition, stress‐related disorders such as anxiety, post‐traumatic stress syndrome and depression are often associated with chronic nicotine use. To study the role of the α5 nicotinic acetylcholine receptor subunit in anxiety‐related responses, control and α5 subunit null mice (α5?/?) were subjected to the open field activity (OFA), light–dark box (LDB) and elevated plus maze (EPM) tests. In the OFA and LDB, α5?/? behaved like wild‐type controls. In the EPM, female α5?/? mice displayed an anxiolytic‐like phenotype, while male α5?/? mice were undistinguishable from littermate controls. We studied the hypothalamus–pituitary–adrenal axis by measuring plasma corticosterone and hypothalamic corticotropin‐releasing factor. Consistent with an anxiolytic‐like phenotype, female α5?/? mice displayed lower basal corticosterone levels. To test whether gonadal steroids regulate the expression of α5, we treated cultured NTera 2 cells with progesterone and found that α5 protein levels were upregulated. In addition, brain levels of α5 mRNA increased upon progesterone injection into ovariectomized wild‐type females. Finally, we tested anxiety levels in the EPM during the estrous cycle. The estrus phase (when progesterone levels are low) is anxiolytic‐like in wild‐type mice, but no cycle‐dependent fluctuations in anxiety levels were found in α5?/? females. Thus, α5‐containing neuronal nicotinic acetylcholine receptors may be mediators of anxiogenic responses, and progesterone‐dependent modulation of α5 expression may contribute to fluctuations in anxiety levels during the ovarian cycle.  相似文献   

20.
BACKGROUND: Ethological tests of anxiety-related behaviors, such as the open field arena and elevated plus maze, are often carried out on transgenic animals in the attempt to correlate gene function with a behavioral phenotype. However, the interpretation of such tests is problematic, as it is probable that different tests measure different aspects of behavior; indeed, anxiety may not be a unitary phenomenon. Here, we address these questions by asking whether behaviors in five ethological tests of anxiety are under the influence of a common set of genes. RESULTS: Using over 1600 F2 intercross animals, we demonstrate that separate, but overlapping, genetic effects can be detected that influence different behavioral dimensions in the open field, elevated plus maze, square maze, light-dark box, and mirror chamber. We find quantitative trait loci (QTLs) on chromosomes 1, 4, and 15 that operate in four tests of anxiety but can be differentiated by their action on behavior in threatening and nonthreatening environments and by whether habituation of the animals to an aversive environment alters their influence. QTLs on chromosomes 7, 12, 14, 18, and X influenced a subset of behavioral measures. CONCLUSIONS: The chromosome 15 QTL acts primarily on avoidance behavior, the chromosome 1 QTL influences exploration, and the QTL on chromosome 4 influences activity. However, the effects of loci on other chromosomes are not so readily reconciled with our current understanding of the psychology of anxiety. Genetic effects on behaviors in these tests are more complex than expected and may not reflect an influence on anxiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号