首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bravo DT  Kolmakova NG  Parsons SM 《Biochemistry》2004,43(27):8787-8793
Active transport of acetylcholine (ACh) by vesicular ACh transporter (VAChT) is driven by a proton-motive force established by V-ATPase. A published microscopic kinetics model predicts the ACh-binding site is primarily oriented toward the outside for nontransporting VAChT and toward the inside for transporting VAChT. The allosteric ligand [(3)H]vesamicol cannot bind when the ACh-binding site is outwardly oriented and occupied by ACh, but it can bind when the ACh site is inwardly oriented. The kinetics model was tested in the paper reported here using rat VAChT expressed in PC12(A1237) cells. Equilibrium titrations of [(3)H]vesamicol binding and ACh competition show that ATP blocks competition between vesamicol and ACh in over one-half of the VAChT. NaCl did not mimic ACh chloride, and bafilomycin A(1) and FCCP completely blocked the ATP effect, which shows that it is mediated by a proton-motive force. The data are consistent with reorientation of over one-half of the ACh-binding sites from the outside to the inside of vesicles upon activation of transport. The observations support the proposed microscopic kinetics model, and they should be useful in characterizing effects of mutations on the VAChT transport cycle.  相似文献   

2.
Ojeda AM  Kolmakova NG  Parsons SM 《Biochemistry》2004,43(35):11163-11174
This study sought primarily to locate the acetylcholine (ACh) binding site in the vesicular acetylcholine transporter (VAChT). The design of the study also allowed us to locate residues linked to (a) the binding site for the allosteric inhibitor vesamicol and (b) the rates of the two transmembrane reorientation steps of a transport cycle. In more characterized proteins, ACh is known to be bound in part through cation-pi solvation by tryptophan, tyrosine, and phenylalanine residues. Each of 11 highly conserved W, Y, and F residues in putative transmembrane domains (TMDs) of rat VAChT was mutated to A and a different aromatic residue to test for loss of cation-pi solvation. Mutated VAChTs were expressed in PC12(A123.7) cells and characterized with the goal of determining whether mutations widely perturbed structure. The thermodynamic affinity for ACh was determined by displacement of trace [(3)H]-(-)-trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol) with ACh, and Michaelis-Menten parameters were determined for [(3)H]ACh transport. Expression levels were determined with [(3)H]vesamicol saturation curves and Western blots, and they were used to normalize V(max) values. "Microscopic" parameters for individual binding and rate steps in the transport cycle were calculated on the basis of a published kinetics model. All mutants were expressed adequately, were properly glycosylated, and bound ACh and vesamicol. Subcellular mistargeting was shown not to be responsible for poor transport by some mutants. Mutation of residue W331, which lies in the beginning of TMD VIII proximal to the vesicular lumen, produced 5- and 9-fold decreased ACh affinities and no change in other parameters. This residue is a good candidate for cation-pi solvation of bound ACh. Mutation of four other residues decreased the ACh affinity up to 6-fold and also affected microscopic rate constants. The roles of these residues in ACh binding and transport thus are complex. Nine mutations allowed us to resolve the ACh and vesamicol binding sites from each other. Other mutations affected only the rates of the transmembrane reorientation steps, and four mutations increased the rate of one or the other. Two mutations increased the value of K(M) up to 5-fold as a result of rate effects with no ACh affinity effect. The results demonstrate that analysis of microscopic kinetics is required for the correct interpretation of mutational effects in VAChT. Results also are discussed in terms of recently determined three-dimensional structures for other transporters in the major facilitator superfamily.  相似文献   

3.
The acetylcholine-binding site in vesicular acetylcholine transporter faces predominantly toward the outside of the vesicle when resting but predominantly toward the inside when transporting. Transport-related reorientation is detected by an ATP-induced decrease in the ability of saturating substrate to displace allosterically bound [(3)H]vesamicol. The assay was used here to determine whether structurally diverse compounds are transported by rat VAChT expressed in PC12(A123.7) cells. Competition by ethidium, tetraphenylphosphonium and other monovalent organic cations with [(3)H]vesamicol is decreased when ATP is added, and the effect depends on proton-motive force. The results indicate that many organic molecules carrying +1 charge are transported, even though the compounds do not resemble acetylcholine in structural details.  相似文献   

4.
Shiba K  Yano T  Sato W  Mori H  Tonami N 《Life sciences》2002,71(13):1591-1598
We investigated the binding characteristics of optical isomers of three iodovesamicol analogs to vesicular acetylcholine transporters (VAChT) and to sigma receptors (sigma-1, sigma-2) in rat brains. In competitive inhibition studies, (-)-enantiomers [(-)-ortho-iodovesamicol ((-)-oIV), (-)-meta-iodovesamicol ((-)-mIV), (-)-vesamicol] displayed a higher affinity for VAChT than (+)-enantiomer [(+)-oIV, (+)-mIV, (+)-vesamicol]. (-)-oIV and (-)-mIV showed the same high affinity for VAChT as (-)-vesamicol. For sigma receptors(sigma-1, sigma-2), (-)-oIV (Ki = 62.2 nM (to sigma-1) and 554 nM(to sigma-2)) showed a lower affinity than (-)-mIV (Ki = 4.5 nM (to sigma-1) and 42.9 nM (to sigma-2)). Furthermore, in a saturation binding study, (-)-[125I]-oIV exhibited a Kd of 17.4 +/- 5.1 nM with a maximum number of binding sites, Bmax, of 559 +/- 51 fmol/ mg of protein. These results showed that (-)-oIV binds to vesicular acetylcholine transporters (VAChT) more selectively than (-)-mIV, previously reported as a VAChT mapping agent, and may be suitable for VAChT imaging studies.  相似文献   

5.
Expression of the cholinergic gene locus in the rat placenta   总被引:5,自引:2,他引:3  
High amounts of acetylcholine (ACh) and its synthesising enzyme choline acetyltransferase (ChAT) have been detected in the placenta. Since the placenta is not innervated by extrinsic or intrinsic cholinergic neurons, placental ACh and ChAT originate from non-neuronal sources. In neurons, cytoplasmic ACh is imported into synaptic vesicles by the vesicular acetylcholine transporter (VAChT), and released through vesicular exocytosis. In view of the coordinate expression of VAChT and ChAT from the cholinergic gene locus in neurons, we asked whether VAChT is coexpressed with ChAT in rat placenta, and investigated this issue by means of RT-PCR, in situ hybridisation, western blot and immunohistochemistry. Messenger RNA and protein of the common type of ChAT (cChAT), its splice variant peripheral ChAT (pChAT), and VAChT were detected in rat placenta with RT-PCR and western blot. ChAT in situ hybridisation signal and immunoreactivity for cChAT and pChAT were observed in nearly all placental cell types, while VAChT mRNA and immunolabelling were detected in the trophoblast, mesenchymal cells and the visceral yolk sac epithelial cells. While ChAT is nearly ubiquitously expressed in rat placenta, VAChT immunoreactivity is localised cell type specifically, implying that both vesicular and non-vesicular ACh release machineries prevail in placental cell types.  相似文献   

6.
Abstract: The present work tested whether pharmacological activation of protein kinase C (PKC) influences the release of [3H]-acetylcholine ([3H]ACh) synthesized in the presence of vesamicol, an inhibitor of the vesicular acetylcholine transporter (VAChT). Newly synthesized [3H]ACh was released from hippocampal slices by field stimulation (15 Hz) in the absence of vesamicol, but as expected [3H]ACh synthesized during exposure to vesamicol was not released significantly by stimulation. Treatment of slices with the PKC activator phorbol myristate acetate (PMA) decreased the inhibitory effect of vesamicol on [3H]ACh release. The effect of PMA was dose-dependent, was sensitive to calphostin C, a PKC-selective inhibitor, and could not be mimicked by α-PMA, an inactive phorbol ester. PMA did not alter the release of [3H]ACh in the absence of vesamicol, suggesting that the site of PKC action could be related to the VAChT. In agreement with this observation, immunoprecipitation of VAChT from 32P-labeled synaptosomes showed that phosphorylation occurs and that incorporation of 32P in the VAChT protein increases in the presence of PMA. We suggest that PKC alters the output of [3H]ACh formed in the presence of vesamicol and also provide circumstantial evidence for a role of phosphorylation of VAChT in this process.  相似文献   

7.
The vesicular acetylcholine transporter (VAChT) contains six conserved sequence motifs that are rich in proline and glycine. Because these residues can have special roles in the conformation of polypeptide backbone, the motifs might have special roles in conformational changes during transport. Using published bioinformatics insights, the amino acid sequences of the 12 putative, helical, transmembrane segments of wild-type and mutant VAChTs were analyzed for propensity to form non-alpha-helical conformations and molecular notches. Many instances were found. In particular, high propensity for kinks and notches are robustly predicted for motifs D2, C and C'. Mutations in these motifs either increase or decrease Vmax for transport, but they rarely affect the equilibrium dissociation constants for ACh and the allosteric inhibitor, vesamicol. The near absence of equilibrium effects implies that the mutations do not alter the backbone conformation. In contrast, the Vmax effects demonstrate that the mutations alter the difficulty of a major conformational change in transport. Interestingly, mutation of an alanine to a glycine residue in motif C significantly increases the rates for reorientation across the membrane. These latter rates are deduced from the kinetics model of the transport cycle. This mutation is also predicted to produce a more flexible kink and tighter tandem notches than are present in wild-type. For the full set of mutations, faster reorientation rates correlate with greater predicted propensity for kinks and notches. The results of the study argue that conserved motifs mediate conformational changes in the VAChT backbone during transport.  相似文献   

8.
Synthesis of acetylcholine (ACh) by non‐neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na+‐dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. In contrast, some non‐neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non‐neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter‐like proteins, a five gene family choline‐transporter like protein (CTL)1–5. Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na+‐independent and CTL1–5 were expressed in all cells examined. CTL1, 2, and 5 were expressed at highest levels and knockdown of CTL1, 2, and 5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1, 2, 3, and 5 had no effect on ACh synthesis in H82 cells. In contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non‐neuronal cell lines and presents a mechanism to target non‐neuronal ACh synthesis without affecting neuronal ACh synthesis.  相似文献   

9.
Nerve growth factor (NGF) is a trophic and survival factor for cholinergic neurons, and it induces the expression of several genes that are essential for synthesis and storage of acetylcholine (ACh), specifically choline acetyltransferase, vesicular ACh transporter (VAChT), and choline transporter. We have found previously that the phosphatidylinositol 3'-kinase pathway, but not the MEK/MAPK pathway, is the mediator of NGF-induced cholinergic differentiation. Here we demonstrate, in the rat pheochromocytoma cell line PC12 and in primary mouse neuronal cultures, that NGF-evoked up-regulation of these three cholinergic-specific genes is mediated by the anti-apoptotic signaling molecule Akt/protein kinase B. Inhibition of Akt activation by the pharmacological inhibitor 1L-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO), or by a peptide fragment derived from the proto-oncogene TLC1, eliminated NGF-stimulated increases in cholinergic gene expression, as demonstrated by RT-PCR and reporter gene assays. Moreover, treatment with HIMO reversed NGF-evoked increases in choline acetyltransferase activity and ACh production. In co-transfection assays with the reporter construct, a dominant-negative Akt plasmid and Akt1-specific small interfering RNA also attenuated NGF-induced cholinergic promoter activity. Our data indicate that, in addition to its well-described role in promoting neuronal survival, Akt can also mediate signals necessary for neurochemical differentiation.  相似文献   

10.
Abstract— The high affinity transport of choline (Ch) and the synthesis of acetylcholine (ACh) were measured in synaptosomes by measuring the utilization of [2H4]Ch. The synthesis of ACh was reduced under several conditions which reduce the availability of acetyl coenzyme A (AcCoA) including no glucose added, replacement of glucose with succinate or impairment of glucose utilization by bromopyr-uvate, NaCN, or pentobarbital. These conditions did not reduce the amount of unacetylated [2H4]Ch in the synaptosomes indicating that the high affinity transport of Ch is not directly coupled to the synthesis of ACh.  相似文献   

11.
Properties of cysteinyl residues in the vesicular acetylcholine transporter (VAChT) of synaptic vesicles isolated from Torpedo californica were probed. Cysteine-specific reagents of different size and polarity were used and the effects on [3H]vesamicol binding determined. The vesamicol dissociation constant increased 1,000-fold after reaction with p-chloromercuriphenylsulfonate or phenylmercury acetate, but only severalfold after reaction with relatively small methylmercury chloride or methylmethanethiosulfonate (MMTS). Methylmercury chloride, but not MMTS, protected binding from phenylmercury acetate. Thus, two classes of cysteines react to affect vesamicol binding. Class 1 reacts with only organomercurials, and class 2 reacts with both organomercurials and MMTS. Quantitative analysis of the competition between p-chloromercuriphenylsulfonate and VAChT ligands was possible after defining second-order reaction conditions. The results indicate that each cysteinyl class probably contains a single residue. Acetylcholine protects cysteine 1, but apparently does not protect cysteine 2. Vesamicol, which binds to a different site than acetylcholine does, apparently protects both cysteines, suggesting that it induces a conformational change. The relatively large reagent glutathione removes a substituent from cysteine 1, but not cysteine 2, suggesting that cysteine 2 is deeper in the transporter than cysteine 1 is. The complete sequence of T. californica VAChT is given, and possible identities of cysteines 1 and 2 are discussed.  相似文献   

12.
Rats received a solution of sodium barbitone as their only drinking fluid for 33 and 42–44 weeks. In three groups (A3, A12 and A30) the barbitone solution was withheld and replaced by water 3, 12 and 30 days respectively before death. Two other groups consisted of animals drinking barbitone until death (B) and untreated controls (C). Abstinence convulsions were recorded by jiggle cages. Thirty nmol of tritium-labelled choline ([3H]Ch) were injected i.v. and the rats were killed by decapitation 1 min later. A significantly higher content of tritium-labelled acetylcholine ([3H]ACh) was found in the cerebellum + medulla oblongata + midbrain of rats receiving barbitone until death (group B) (+22%) and abstinent for 3 days (+54%) (group A3) compared with group C. The [3H]ACh content was also significantly increased in the hippocampus + cortex of rats abstinent for 3 days (+23%). In the striatum no significant effect on [3H]ACh content was found in any of the groups. The ratio [3H]ACh/[3H]Ch was significantly increased in the cerebellum + medulla oblongata + midbrain of rats in group B and A3 and in the hippocampus + cortex in group A3. These results might indicate an increased turnover of ACh. The effect of long-term barbitone treatment on the enzyme activities of brain choline acetyltransferase and acetylcholinesterase was also studied but no significant effect was found.  相似文献   

13.
A series of vesamicol analogues, o-iodo-trans-decalinvesamicol (OIDV) or o-bromo-trans-decalinvesamicol (OBDV), were synthesized and their affinities to vesicular acetylcholine transporter (VAChT) and σ receptors (σ-1, σ-2) were evaluated by in vitro binding assays using rat cerebral or liver membranes. OIDV and OBDV showed greater binding affinity to VAChT (K(i)=20.5±5.6 and 13.8±1.2nM, respectively) than did vesamicol (K(i)=33.9±18.1nM) with low affinity to σ receptors. A saturation binding assay in rat cerebral membranes revealed that [(125)I]OIDV had a single high affinity binding site with a K(d) value of 1.73nM and a B(max) value of 164.4fmol/mg protein. [(125)I]OIDV revealed little competition with inhibitors, which possessed specific affinity to each σ (σ-1 and σ-2), serotonin (5-HT(1A) and 5-HT(2A)), noradrenaline, and muscarinic acetylcholine receptors. In addition, BBB penetration of [(125)I]OIDV was verified in in vivo. The results of the binding studies indicated that OIDV and OBDV had great potential to be VAChT imaging probes with high affinity and selectivity.  相似文献   

14.
A previous structure-activity investigation of acetylcholine (ACh) revealed a positive correlation between additional hydrophobic bulk and increased potency for inhibition of active transport of [3H]ACh by synaptic vesicles isolated from the electric organ of Torpedo. In the current study, several ACh analogues that are significantly larger than previously studied "false transmitters" were synthesized in the tritiated form by chemical means and tested for active transport. These are analogue 14 [(+/-)-(cis,trans)-1-benzyl-1-methyl-3-acetoxypyrrolidinium iodide], analogue 15 [(+/-)-1,1-dimethyl-3-benzoyloxypyrrolidinium iodide], and analogue 16/17 [(+/-)-(cis,trans)-1-benzyl-1-methyl-3-benzoyloxypyrrolidinium iodide]. These analogues place significant additional hydrophobic bulk on one or the other (analogues 14 and 15) or both (analogue 16/17) of the two pharmacophores of a small, conformationally constrained analogue of ACh. [3H]Analogue 14 and [3H]analogue 15 are actively transported, with Vmax values the same as or less than that of ACh, depending on the vesicle preparation. The observation that Vmax is the same for an analogue and ACh in some vesicle preparations suggests that the rate-limiting step does not involve ACh bound to the transporter. [3H]Analogue 16/17 is actively transported very poorly. Km values for ACh and for transported ACh analogues vary by up to two- to threefold in different vesicle preparations. The ACh transporter is much less selective for transported substrates than anticipated.  相似文献   

15.
Immortalized rat brain endothelial RBE4 cells do not express choline acetyltransferase (ChAT), but they do express an endogenous machinery that enables them to release specifically acetylcholine (ACh) on calcium entry when they have been passively loaded with the neurotransmitter. Indeed, we have previously reported that these cells do not release glutamate or GABA after loading with these transmitters. The present study was set up to engineer stable cell lines producing ACh by transfecting them with an expression vector construct containing the rat ChAT. ChAT transfectants expressed a high level of ChAT activity and accumulated endogenous ACh. We examined evoked ACh release from RBE4 cells using two parallel approaches. First, Ca2+-dependent ACh release induced by a calcium ionophore was followed with a chemiluminescent procedure. We showed that ChAT-transfected cells released the transmitter they had synthesized and accumulated in the presence of an esterase inhibitor. Second, ACh released on an electrical depolarization was detected in real time by a whole-cell voltage-clamped Xenopus myocyte in contact with the cell. Whether cells synthesized ACh or whether they were passively loaded with ACh, electrical stimulation elicited the release of ACh quanta detected as inward synaptic-like currents in the myocyte. Repetitive stimulation elicited a continuous train of responses of decreasing amplitudes, with rare failures. Amplitude analysis showed that the currents peaked at preferential levels, as if they were multiples of an elementary component. Furthermore, we selected an RBE4 transgenic clone exhibiting a high level of ChAT activity to introduce the Torpedo vesicular ACh transporter (VAChT) gene. However, as the expression of ChAT was inactivated in stable VAChT transfectants, the potential influence of VAChT on evoked ACh release could only be studied on cells passively loaded with ACh. VAChT expression modified the pattern of ACh delivery on repetitive electrical stimulation. Stimulation trains evoked several groups of responses interrupted by many failures. The total amount of released ACh and the mean quantal size were not modified. As brain endothelial cells are known as suitable cellular vectors for delivering gene products to the brain, the present results suggest that RBE4 cells genetically modified to produce ACh and intrinsically able to support evoked ACh release may provide a useful tool for improving altered cholinergic function in the CNS.  相似文献   

16.
Both the membrane-bound choline acetyltransferase (MChAT) and soluble ChAT (SChAT) were found to be activated by ATP-mediated protein phosphorylation. ATP activation of MChAT but not SChAT was found to depend on the integrity of proton gradient of synaptic vesicles because conditions disrupting the proton gradient also abolished the activation of MChAT by ATP. Among the kinases studied, Ca2+/calmodulin kinase II is most effective in activation of MChAT. Transport of ACh into synaptic vesicles by vesicular acetylcholine transporter (VAChT) is also proton gradient-dependent; therefore we proposed that there is a functional coupling between ACh synthesis and its packaging into synaptic vesicles. This notion is supported by the following findings: first, the newly synthesized [3H]-ACh from [3H]-choline was taken up much more efficiently than the pre-existing ACh; second, ATP-activation of MChAT was abolished when VAChT was inhibited by the specific inhibitor vesamicol; third, the activity of ChAT was found to be markedly increased when neurons are under depolarizing conditions.  相似文献   

17.
The Cholinergic Gene Locus   总被引:6,自引:3,他引:3  
  相似文献   

18.
The effects of choline administration on acetylcholine metabolism in the central nervous system are controversial. Although choline supplementation may elevate acetylcholine (ACh) content in brain, turnover studies with labelled choline precursors suggest that systemic choline administration either has no effect or actually diminishes brain ACh synthesis. Since choline supplementation elevates brain choline levels, the apparent decreases in previous turnover studies may reflect dilution of the labelled choline precursor pool rather than altered ACh formation. Therefore, brain ACh formation from [U-14C]glucose was determined after choline supplementation. A two to three fold elevation of brain choline did not alter ACh levels or [U-14C]glucose incorporation into ACh in the cortex, hippocampus or striatum. Although atropine stimulated ACh formation from [U-14C]glucose in hippocampus, two to three fold increases in brain choline did not augment ACh synthesis or content in atropine pretreated animals. Atropine depressed brain regional glucose utilization and this effect was not reversed by choline treatment. These results suggest that shorttern elevation of brain choline does not enhance ACh formation from [U-14C]glucose, and argue against enhanced presynaptic cholinergic function after acute, systemic choline administration.Special issue dedicated to Dr. Louis Sokoloff.  相似文献   

19.
The neurotransmitter acetylcholine (ACh) plays a crucial role in both the central and peripheral nervous system. Central cholinergic transmission is important for cognitive functions and cholinergic disruptions have been associated with different neural disorders. We here tested the role of cholinergic transmission in basic cognitive functions, i.e. in prepulse inhibition (PPI) and short-term habituation (STH) as well as long-term habituation (LTH) of startle using mice with a 65% knockdown (KD) of the vesicular ACh transporter (VAChT). These mice are slow in refilling cholinergic synaptic transmitter vesicles, leading to a reduced cholinergic tone. Prepulse inhibition has been assumed to be mediated by cholinergic projections from the midbrain to the reticular formation. Surprisingly, PPI and STH were normal in these mice, whereas LTH was disrupted. This disruption could be rescued by pre-testing injections of the ACh esterase inhibitor galantamine, but not by post-testing injections. The lack of a PPI deficit might be because of the fact that VAChT KD mice show disruptions mainly in prolonged cholinergic activity, therefore the transient activation by prepulse processing might not be sufficient to deplete synaptic vesicles. The disruption of LTH indicates that the latter depends on a tonic cholinergic inhibition. Future experiments will address which cholinergic cell group is responsible for this effect.  相似文献   

20.
Choline acetyltransferase (ChAT) is the key enzyme for acetylcholine (ACh) synthesis and constitutes a reliable marker for the integrity of cholinergic neurons. Cortical ChAT activity is decreased in the brain of patients suffering from Alzheimer's and Parkinson's diseases. The standard method used to measure the activity of ChAT enzyme relies on a very sensitive radiometric assay, but can only be performed on post‐mortem tissue samples. Here, we demonstrate the possibility to monitor ACh synthesis in rat brain homogenates in real time using NMR spectroscopy. First, the experimental conditions of the radiometric assay were carefully adjusted to produce maximum ACh levels. This was important for translating the assay to NMR, which has a low intrinsic sensitivity. We then used 15N‐choline and a pulse sequence designed to filter proton polarization by nitrogen coupling before 1H‐NMR detection. ACh signal was resolved from choline signal and therefore it was possible to monitor ChAT‐mediated ACh synthesis selectively over time. We propose that the present approach using a labeled precursor to monitor the enzymatic synthesis of ACh in rat brain homogenates through real‐time NMR represents a useful tool to detect neurotransmitter synthesis. This method may be adapted to assess the state of the cholinergic system in the brain in vivo in a non‐invasive manner using NMR spectroscopic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号