共查询到20条相似文献,搜索用时 0 毫秒
1.
V O Palmieri A Velardi N Morelli M Tomanelli V Maggi G Palasciano 《Bollettino della Società italiana di biologia sperimentale》1990,66(6):559-566
A fluorimetric method for the study of intracellular Ca++ metabolism in rat pancreatic acini is described. Following previous reports on the utilization of the new intracellularly trapped fluorescent dye fura2 in human lymphocytes, the authors point out the relevance of the cellular and fura2 concentration as critical issues for an accurate evaluation of Ca++ homeostasis. A dose-response curve to both carbamoylcholine and cholecystokinin is reported, demonstrating the ability of the cells to respond to hormonal stimulation with a transient Ca++ peak. The almost complete absence of noise in the recorded traces allow to carry out an evaluation of the intracellular mechanism related to Ca++ mobilization with a very high sensitivity. 相似文献
2.
Influence of 1,5-(3,3'-dimethylphosphate)diphenoxy-3-oxapentane (DDOP) on conductivity (G) of bilayers of common fabbit brain lipids is studied. It has been found that DDOP increases the bilayer conductivity in the presence of Ca++ and Mg++ (G-maximum at pH = 7.0) they do not act in the presence of K+, Na+. pK'DDOP, pK"DDOP values are equal to 1.2, and 7.7 respectively as determined by titration. Formation of "pseudomacrocyclic" DDOP structure is suggested. The role of Ca++, Mg++ ions seems to consist in lipophilisation of ionized forms of DDOP. 相似文献
3.
Uptake of Ca2+ and refilling of intracellular Ca2+ stores in Ehrlich-ascites-tumour cells and in rat thymocytes. 下载免费PDF全文
We have studied the uptake of Ca2+ and its redistribution between the cytoplasm and the intracellular stores in Ehrlich-ascites-tumour cells and rat thymocytes previously depleted of Ca2+ by incubation in Ca2(+)-free medium. Measurements included changes of the cytoplasmic Ca2+ concentration ([Ca2+]i), uptake of 45Ca2+ and uptake of Mn2+, a Ca2+ surrogate for Ca2+ channels. Refilling of the Ca2+ stores in thymocytes was very fast (half-filling time: 4 s at 37 degrees C) and very sensitive to temperature (10 times slower at 20 degrees C). It was always preceded by increase of [Ca2+]i. In the Ehrlich cell, both refilling and increase of [Ca2+]i were about one order of magnitude slower. The increase of [Ca2+]i and the refilling of the intracellular stores were both almost completely blocked by Ni2+ in thymocytes, but only partially in the Ehrlich cell. The rates of 45Ca2+ and Mn2+ uptake varied consistently with temperature and the kind of cell. These results suggest that the intracellular stores are refilled by Ca2+ taken up from the cytoplasm. We also find that filling of the Ca2+ stores decreases by about 90% the rate of Mn2+ uptake in thymocytes. This is direct evidence of modulation of the plasma-membrane Ca2+ entry by the degree of filling of the intracellular stores. This modulation occurs in the absence of agonists, suggesting some kind of signalling between the intracellular stores and the Ca2+ entry pathways of the plasma membrane. 相似文献
4.
We used pulsed laser imaging to measure the development and dissipation of Ca(2+) gradients evoked by the activation of voltage-sensitive Ca(2+) channels in adrenal chromaffin cells. Ca(2+) gradients appeared rapidly (<5 ms) upon membrane depolarization and dissipated over several hundred milliseconds after membrane repolarization. Dissipation occurred with an initial fast phase, as the steep gradient near the membrane collapsed, and a slower phase as the remaining shallow gradient dispersed. Inhibition of active Ca(2+) uptake by the endoplasmic reticulum (thapsigargin) and mitochondria (carbonylcyanide p-trifluoro-methoxyphenylhydrazone/oligomycin) had no effect on the size of Ca(2+) changes or the rate of gradient dissipation, suggesting that passive endogenous Ca(2+) buffers are responsible for the slow Ca(2+) redistribution. We used a radial diffusion model incorporating Ca(2+) diffusion and binding to intracellular Ca(2+) buffers to simulate Ca(2+) gradients. We included a 3D optical sectioning model, simulating the effects of out-of-focus light, to allow comparison with the measured gradients. Introduction of a high-capacity immobile Ca(2+) buffer, with a buffer capacity on the order of 1000 and appropriate affinity and kinetics, approximated the size of the Ca(2+) increases and rate of dissipation of the measured gradients. Finally, simulations without exogenous buffer suggest that the Ca(2+) signal due to Ca(2+) channel activation is restricted by the endogenous buffer to a space less than 1 microm from the cell membrane. 相似文献
5.
Improved method for measuring intracellular Ca++ with fluo-3 总被引:2,自引:0,他引:2
The accuracy of flow cytometric measurement of intracellular calcium with fluo-3 is compromised by variation in basal fluorescence intensity due to heterogeneity in dye uptake or compartmentalization. We have loaded cells simultaneously with fluo-3 and SNARF-1. When SNARF-1 fluorescence is collected at approximately 600 nm, its intensity does not change upon cell activation. Furthermore, fluo-3 and SNARF-1 fluorescence signals exhibit a linear relationship. The ratio of fluo-3 to SNARF-1 eliminates a significant proportion of variation in fluorescence intensity caused by variation in fluo-3 uptake and thus can be used as a sensitive parameter for measuring changes in [Ca2+]i. 相似文献
6.
Summary Secretagogues of pancreatic enzyme secretion, the hormones pancreozymin, carbamylcholine, gastrin I, the octapeptide of pancreozymin, and caerulein as well as the Ca++-ionophore A 23187 stimulate45Ca efflux from isolated pancreatic cells. The nonsecretagogic hormones adrenaline, isoproterenol, secretin, as well as dibutyryl cyclic adenosine 3,5-monophosphate and dibutyryl cyclic guanosine 3,5-monophosphate have no effect on45Ca efflux. Atropine blocks the stimulatory effect of carbamylcholine on45Ca efflux completely, but not that of pancreozymin. A graphical analysis of the Ca++ efflux curves reveals at least three phases: a first phase, probably derived from Ca++ bound to the plasma membrane; a second phase, possibly representing Ca++ efflux from cytosol of the cells; and a third phase, probably from mitochondria or other cellular particles. The Ca++ efflux of all phases is stimulated by pancreozymin and carbamylcholine. Ca++ efflux is not significantly effected by the presence or absence of Ca++ in the incubation medium. Metabolic inhibitors of ATP production, Antimycin A and dinitrophenol, which inhibit Ca++ uptake into mitochondria, stimulate Ca++ efflux from the isolated cells remarkably, but inhibit the slow phase of Ca++ influx, indicating the role of mitochondria as an intracellular Ca++ compartment. Measurements of the45Ca++ influx at different Ca++ concentrations in the medium reveal saturation type kinetics, which are compatible with a carrier or channel model. The hormones mentioned above stimulate the rate of Ca++ translocation.The data suggest that secretagogues of pancreatic enzyme secretion act by increasing the rate of Ca++ transport most likely at the level of the cell membrane and that Ca++ exchange diffusion does not contribute to the45Ca++ fluxes.With the technical assistance of C. Hornung. 相似文献
7.
8.
M A Stevenson S K Calderwood G M Hahn 《Biochemical and biophysical research communications》1986,137(2):826-833
Heat shock (45 degrees C) caused a rapid (less than 1 min) release of inositol trisphosphate from the membranes of HA-1 CHO fibroblasts. The rise in inositol trisphosphate concentration was followed by an increase in intracellular free Ca++. In addition to the heat induced rise in intracellular free Ca++, we observed an increase in 45Ca++ influx following nonlethal heat shock (45 degrees C/10 min). The heat-induced increase in 45Ca++ influx was linearly related to membrane accumulation of phosphatidic acid, phosphoinositide metabolite that may be involved in Ca++ gating. These results suggest that the membrane may be the proximal target of heat shock; stimulation of rapid breakdown of polyphosphoinositides and subsequent increases in intracellular free Ca++ may provide a mechanistic insight into the pleiotropic effects of heat. In addition, the large increases in Ca++ influx could initiate a Ca++ dependent mechanism of thermal cell killing. 相似文献
9.
Carbamylcholine, TRH, PGF2 alpha and fluoride enhance free intracellular Ca++ and Ca++ translocation in dog thyroid cells 总被引:2,自引:0,他引:2
E Raspé P P Roger J E Dumont 《Biochemical and biophysical research communications》1986,141(2):569-577
Effects on Ca++ translocation and [Ca++]i were studied in dog thyro?d cell monolayers using both 45Ca++ efflux and the indicator quin-2. Carbamylcholine, a non hydrolysable analog of acetylcholine, through muscarinic receptors, and to a lesser extent TRH and PGF2 alpha increased both these parameters. [Ca++]i increased by 171, 100 and 75% respectively over a basal level of 66 +/- 17 nM (mean +/- SD). The response to carbamylcholine was biphasic. A transient increase in [Ca++]i was followed by a more sustained phase where the [Ca++]i was slightly higher than the basal level. Only the first phase was insensitive to extracellular Ca++ depletion. This phase is probably due to a release of Ca++ from an intracellular store. NaF also induced a sustained rise in [Ca++]i dependent on extracellular Ca++ and affected 45Ca++ efflux. Our data provide direct evidence of an implication of intracellular Ca++ in the response of dog thyro?d cells to all these agents. 相似文献
10.
《The Journal of general physiology》1993,102(5):907-924
Olfactory neurons respond to odors with a change in conductance that mediates an influx of cations including Ca2+. The concomitant increase in [Cai] has been postulated to play a role in the adaptation to maintained odorant stimulation (Kurahashi, T., and T. Shibuya. 1990. Brain Research. 515:261-268. Kramer, R. H., and S. A. Siegelbaum. 1992. Neuron. 9:897-906. Zufall, F., G. M. Shepherd, and S. Firestein. 1991. Proceedings of the Royal Society of London, B. 246:225-230.) We have imaged the distribution of [Cai] in rat olfactory neurons (RON) using the Ca2+ indicator fura-2. A large percentage of the RON (42%, n = 35) responded to odorants with an increase in [Cai]. About half of the responding neurons displayed an increase in [Cai] at the apical end of the cell, but not at the soma. Moreover, in those cells that responded to odors with a standing [Cai] gradient, the gradient could be maintained for long periods of time (minutes) provided that the cells were continuously stimulated. In contrast, K(+)-induced depolarization elicited a more homogeneous increase in [Cai]. The spatially inhomogeneous increase in [Cai] elicited by odorants in some cells has important implications for the role of Ca2+ in adaptation because channels and enzymes regulated by Ca2+ will be affected differently depending on their location. 相似文献
11.
A S Gukovskaya V P Zinchenko V V Petrunyaka B I Khodorov Y V Evtodienko 《European journal of biochemistry》1986,161(1):249-256
The regulation of free Ca2+ concentration by intracellular pools and their participation in the mitogen-induced changes of the cytosolic free Ca2+ concentration, [Ca2+]i, was studied in digitonin-permeabilized and intact rat thymocytes using a Ca2+-selective electrode, chlortetracycline fluorescence and the Ca2+ indicator quin-2. It is shown that in permeabilized thymocytes Ca2+ can be accumulated by two intracellular compartments, mitochondrial and non-mitochondrial. Ca2+ uptake by the non-mitochondrial compartment, presumably the endoplasmic reticulum, is observed only in the presence of MgATP, is increased by oxalate and inhibited by vanadate. The mitochondria do not accumulate calcium at a free Ca2+ concentration below 1 microM. The non-mitochondrial compartment has a greater affinity for calcium and is capable of sequestering Ca2+ at a free Ca2+ concentration less than 1 microM. At free Ca2+ concentration close to the cytoplasmic (0.1 microM) the main calcium pool in permeabilized thymocytes is localized in the non-mitochondrial compartment. Ca2+ accumulated in the non-mitochondrial pool can be released by inositol 1,4,5-triphosphate (IP3) which has been inferred to mediate Ca2+ mobilization in a number of cell types. Under experimental conditions in which ATP-dependent Ca2+ influx is blocked, the addition of IP3 results in a large Ca2+ release from the non-mitochondrial pool; thus IP3 acts by activation of a specific efflux pathway rather than by inhibiting Ca2+ influx. SH reagents do not prevent IP3-induced Ca2+ mobilization. Addition of the mitochondrial uncouplers, FCCP or ClCCP, to intact thymocytes results in no increase in [Ca2+]i measured with quin-2 tetraoxymethyl ester whereas the Ca2+ ionophore A23187 induces a Ca2+ release from the non-mitochondrial store(s). Thus, the data obtained on intact cells agree with those obtained in permeabilized thymocytes. The mitogen concanavalin A increases [Ca2+]i in intact thymocytes suspended in both Ca2+-containing an Ca2+-free medium. This indicates a mitogen-induced mobilization of an intracellular Ca2+ pool, probably via the IP3 pathway. 相似文献
12.
13.
M K McMillian S P Soltoff B R Talamo 《Biochemical and biophysical research communications》1987,148(3):1017-1024
The effects of supramaximal concentrations of substance P and the cholinergic agonist carbachol on the accumulation of inositol trisphosphate and the elevation of the intracellular free calcium concentration were compared in rat parotid acinar cells. Substance P was fully as effective as carbachol at initial times, but there was a rapid loss of the substance P responses while the effects of carbachol were well maintained. The loss of the substance P responses represented desensitization rather than degradation of the peptide since further additions of substance P were without effect. Desensitization to substance P did not involve long-term loss of substance P receptors as it was fully reversible in less than twenty minutes, the minimum time to extensively wash previously desensitized cells. 相似文献
14.
A S Gukovskaya H Arias Pulido V V Petrunyaka V P Zinchenko V V Bezuglov 《Cell calcium》1990,11(8):539-546
The lipoxygenase (LO) inhibitors nordihydroguaiaretic acid (NDGA) and 15S-hydroxy-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid (15-HETE) have been found to suppress the rise in free cytoplasmic Ca2+ concentration [( Ca2+]i) induced by the Ca2+ ionophores ionomycin and A23187 in rat thymocytes. Bromophenacyl bromide (BPB), a phospholipase A2 (PLA2) inhibitor, produced a much weaker inhibitory effect, and indomethacin, a cyclo-oxygenase inhibitor, practically did not influence the [Ca2+]i response to ionomycin. These findings implicate the involvement of LO product(s) in the [Ca2+]i rise triggered by the Ca2+ ionophores. The contribution of the NDGA-sensitive component to the ionomycin-induced [Ca2+]i rise was significant in the ionomycin concentration range of 0.1 nM to 0.1 microM whereas at higher doses of the ionophore it gradually diminished. By contrast, the [Ca2+]i rise induced by exogenous arachidonic acid (AA) or melittin, a PLA2 activator, was not suppressed but potentiated by NDGA. Ionomycin and exogenous AA also elicited opposite changes in thymocyte cytoplasmic pH (pHi): the former elevated the pHi while the latter induced a pronounced acidification of the cytoplasm. This difference in the pHi responses may account for the different sensitivity of ionomycin- and AA-elicited [Ca2+]i signal to LO inhibitors. 相似文献
15.
By means of delta pH 14C-methylamine indicator the myometrium vesicle sarcolemma fraction was shown to be capable, while applying a "delta pH-leap", for developing in it a proton transmembrane gradient, dissipating in time. The proton gradient dissipation under Ca ions transmembrane equilibrium concentration is a driving force of these ions transposition against the concentration gradient. The blocking agents of H+ transport--Cd ions and DCCD decrease the proton-dependent 45Ca2+ accumulation in the vesicle sarcolemma fraction. The conclusion has been made about the possibility of Ca2+(H(+)-exchange on the uterus smooth cells sarcolemma. The possible physiological value of this exchange is under discussion. 相似文献
16.
17.
18.
19.
Isolated human red blood cell membrane fragments (RBCMF) were found to take up Ca++ in the presence of ATP.1 This ATP-dependent Ca++ uptake by RBCMF appears to be the manifestation of an active Ca++ transport mechanism in the red cell membrane reported previously (Schatzmann, 1966; Lee and Shin, 1969). The influences of altering experimental conditions on Ca++-stimulated Mg++ ATPase (Ca++ ATPase) and Ca++ uptake of RBCMF were studied. It was found that pretreatment of RBCMF at 50°C abolished both Ca++ ATPase and Ca++ uptake. Pretreatment of RBCMF with phospholipases A and C decreased both Ca++ ATPase and Ca++ uptake, whereas pretreatment with phospholipase D did not significantly alter either Ca++ ATPase or Ca++ uptake. Both Ca++ ATPase and Ca++ uptake had ATP specificity, similar optimum pH's, and optimum incubation temperatures. From these results, it was concluded that Ca++ uptake is intimately linked to Ca++ ATPase. 相似文献
20.
J A Ruth J V Cuizon L E Eiden 《Biochemical and biophysical research communications》1983,117(2):536-540
Exposure of rat atrial slices to 10(-5) M norepinephrine (NE) for 10 minutes increases 45Ca++ accumulation from 1.64 +/- 0.10 to 2.23 +/- 0.06 nmol/mg tissue. In the presence of leucine enkephalin (10(-8) M), NE-stimulated 45Ca++ uptake is reduced to 1.44 +/- 0.10 nmol/mg tissue. The effect of leu-enkephalin is reversed in the presence of 10(-7) M naloxone, NE-stimulated 45Ca++ uptake being increased to 2.17 +/- 0.15 nmol/mg tissue. The results support a direct interaction of leu enkephalin with beta-agonist-stimulated Ca++ flux in rat atria, and correlate with the previously reported enkephalin antagonism of NE-induced positive chronotropy in the same tissue. 相似文献