首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the past years, remarkable progress has been made in our understanding of the replication cycle of bacteriophage M13 and the molecular details that enable phage proteins to navigate in the complex environment of the host cell. With new developments in molecular membrane biology in combination with spectroscopic techniques, we are now in a position to ask how phages carry out this delicate process on a molecular level, and what sort of protein-lipid and protein-protein interactions are involved. In this review we will focus on the molecular details of the protein-protein and protein-lipid interactions of the major coat protein (gp8) that may play a role during the infection of Escherichia coli by bacteriophage M13.  相似文献   

2.
Bacteriophage M13 major coat protein is extensively used as a biophysical, biochemical, and molecular biology reference system for studying membrane proteins. The protein has several elements that control its position and orientation in a lipid bilayer. The N-terminus is dominated by the presence of negatively charged amino acid residues (Glu2, Asp4, and Asp5), which will always try to extend into the aqueous phase and therefore act as a hydrophilic anchor. The amphipathic and the hydrophobic transmembrane part contain the most important hydrophobic anchoring elements. In addition there are specific aromatic and charged amino acid residues in these domains (Phe 11, Tyr21, Tyr24, Trp26, Phe42, Phe45, Lys40, Lys43, and Lys44) that fine-tune the association of the protein to the lipid bilayer. The interfacial Tyr residues are important recognition elements for precise protein positioning, a function that cannot be performed optimally by residues with an aliphatic character. The Trp26 anchor is not very strong: depending on the context, the tryptophan residue may move in or out of the membrane. On the other hand, Lys residues and Phe residues at the C-terminus of the protein act in a unique concerted action to strongly anchor the protein in the lipid bilayer.  相似文献   

3.
Gene 9 protein is one of the minor coat proteins of bacteriophage M13. The protein plays a role in the assembly process by associating with the host membrane by protein-lipid interactions. The availability of chemically synthesized protein has enabled the biophysical characterization of the membrane-bound state of the protein by using model membrane systems. This paper summarizes, discusses and further interprets this work in the light of the current state of the literature, leading to new possible models of the coat protein in a membrane. The biological implications of these findings related to the membrane-bound phage assembly are indicated.  相似文献   

4.
The structure of a membrane-embedded alpha-helical reference protein, the M13 major coat protein, is characterized under different conditions of hydrophobic mismatch using fluorescence resonance energy transfer in combination with high-throughput mutagenesis. We show that the structure is similar in both thin (14:1) and thick (20:1) phospholipid bilayers, indicating that the protein does not undergo large structural rearrangements in response to conditions of hydrophobic mismatch. We introduce a "helical fingerprint" analysis, showing that amino acid residues 1-9 are unstructured in both phospholipid bilayers. Our findings indicate the presence of pi-helical domains in the transmembrane segment of the protein; however, no evidence is found for a structural adaptation to the degree of hydrophobic mismatch. In light of current literature, and based on our data, we conclude that aggregation (at high protein concentration) and adjustment of the tilt angle and the lipid structure are the dominant responses to conditions of hydrophobic mismatch.  相似文献   

5.
Foreign DNA fragments were inserted into filamentous phage gene VIII to create hybrid B-proteins with foreign sequences in the amino terminus. The hybrid proteins are incorporated into the virions which retain viability and infectivity. Virions with hybrid B-proteins have the same contour length and the same number of B-protein molecules as virions with natural B-proteins. It was shown that for one of hybrid B-proteins the position of the processing site had changed.  相似文献   

6.
The M13 major coat protein has been extensively studied in detergent-based and phospholipid model systems to elucidate its structure. This resulted in an L-shaped model structure of the protein in membranes. An amphipathic alpha-helical N-terminal arm, which is parallel to the surface of the membrane, is connected via a flexible linker to an alpha-helical transmembrane domain. In the present study, a fluorescence polarity probe or ESR spin probe is attached to the SH group of a series of N-terminal single cysteine mutants, which were reconstituted into DOPC model membranes. With ESR spectroscopy, we measured the local mobility of N-terminal positions of the protein in the membrane. This is supplemented with relative depth measurements at these positions by fluorescence spectroscopy via the wavelength of maximum emission and fluorescence quenching. Results show the existence of at least two possible configurations of the M13 amphipathic N-terminal arm on the ESR time scale. The arm is bound either to the membrane surface or in the water phase. The removal or addition of a hydrophobic membrane-anchor by site-specific mutagenesis changes the ratio between the membrane-bound and the water phase fraction.  相似文献   

7.
We have reported variants of the M13 bacteriophage major coat protein (P8) that enable high copy display of monomeric and oligomeric proteins, such as human growth hormone and steptavidin, on the surface of phage particles (Sidhu SS, Weiss GA, Wells JA. 2000. High copy display of large proteins on phage for functional selections. J Mol Biol 296:487-495). Here, we explore how an optimized P8 variant (opti-P8) could evolve the ability to efficiently display a protein fused to its N-terminus. Reversion of individual opti-P8 residues back to the wild-type P8 residue identifies a limited set of hydrophobic residues responsible for the high copy protein display. These hydrophobic amino acids bracket a conserved hydrophobic face on the P8 alpha helix thought to be in contact with the phage coat. Mutations additively combine to promote high copy protein display, which was further enhanced by optimization of the linker between the phage coat and the fusion protein. These data are consistent with a model in which protein display-enhancing mutations allow for better packing of the fusion protein into the phage coat. The high tolerance for phage coat protein mutations observed here suggests that filamentous phage coat proteins could readily evolve new capabilities.  相似文献   

8.
M13 major coat protein was derivatized with BODIPY (n-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide), and its aggregation was studied in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and DOPC/1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DOPG) or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)/DOPG (model systems of membranes with hydrophobic thickness matching that of the protein) using photophysical methodologies (time-resolved and steady-state self-quenching, absorption, and emission spectra). It was concluded that the protein is essentially monomeric, even in the absence of anionic phospholipids. The protein was also incorporated in pure bilayers of lipids with a strong mismatch with the protein transmembrane length, 1,2-dierucoyl-sn-glycero-3-phosphocholine (DEuPC, longer lipid) and 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (DMoPC, shorter lipid), and in lipidic mixtures containing DOPC and one of these lipids. The protein was aggregated in the pure vesicles of mismatching lipid but remained essentially monomeric in the mixtures as detected from BODIPY fluorescence emission self-quenching. From fluorescence resonance energy transfer (FRET) measurements (donor-n-(iodoacetyl)aminoethyl-1-sulfonaphthylamine (IAEDANS)-labeled protein; acceptor-BODIPY labeled protein), it was concluded that in the DEuPC/DOPC and DMoPC/DOPC lipid mixtures, domains enriched in the protein and the matching lipid (DOPC) are formed.  相似文献   

9.
Gene 9 protein is one of the minor coat proteins of bacteriophage M13. The protein plays a role in the assembly process by associating with the host membrane by protein-lipid interactions. The availability of chemically synthesized protein has enabled the biophysical characterization of the membrane-bound state of the protein by using model membrane systems. This paper summarizes, discusses and further interprets this work in the light of the current state of the literature, leading to new possible models of the coat protein in a membrane. The biological implications of these findings related to the membrane-bound phage assembly are indicated.  相似文献   

10.
M13 major coat protein, a 50-amino-acid-long protein, was incorporated into DOPC/DOPG (80/20 molar ratio) unilamellar vesicles. Over 60% of all amino acid residues was replaced with cysteine residues, and the single cysteine mutants were labeled with the fluorescent label I-AEDANS. The coat protein has a single tryptophan residue that is used as a donor in fluorescence (or F?rster) resonance energy transfer (FRET) experiments, using AEDANS-labeled cysteines as acceptors. Based on FRET-derived constraints, a straight alpha-helix is proposed as the membrane-bound conformation of the coat protein. Different models were tested to represent the molecular conformations of the donor and acceptor moieties. The best model was used to make a quantitative comparison of the FRET data to the structures of M13 coat protein and related coat proteins in the Protein Data Bank. This shows that the membrane-bound conformation of the coat protein is similar to the structure of the coat protein in the bacteriophage that was obtained from x-ray diffraction. Coat protein embedded in stacked, oriented bilayers and in micelles turns out to be strongly affected by the environmental stress of these membrane-mimicking environments. Our findings emphasize the need to study membrane proteins in a suitable environment, such as in fully hydrated unilamellar vesicles. Although larger proteins than M13 major coat protein may be able to handle environmental stress in a different way, any membrane protein with water exposed parts in the C or N termini and hydrophilic loop regions should be treated with care.  相似文献   

11.
The family of three-dimensional molecular structures of the major coat protein from the M13 bacteriophage, which was determined in detergent micelles by NMR methods, has been analyzed by constrained geometry optimization in a phospholipid environment. A single-layer solvation shell of dioleoyl phosphatidylcholine lipids was built around the protein, after replacing single residues by cysteines with a covalently attached maleimide spin label. Both the residues substituted and the phospholipid were chosen for comparison with site-directed spin labeling EPR measurements of distance and local mobility made previously on membranous assemblies of the M13 coat protein purified from viable mutants. The main criteria for identifying promising candidate structures, out of the 300 single-residue mutant models generated for the membranous state, were 1) lack of steric conflicts with the phospholipid bilayer, 2) good match of the positions of spin-labeled residues along the membrane normal with EPR measurements, and 3) a good match between the sequence profiles of local rotational freedom and a structural restriction parameter for the spin-labeled residues obtained from the model. A single subclass of structure has been identified that best satisfies these criteria simultaneously. The model presented here is useful for the interpretation of future experimental data on membranous M13 coat protein systems. It is also a good starting point for full-scale molecular dynamics simulations and for the design of further site-specific spectroscopic experiments.  相似文献   

12.
Yuen CT  Davidson AR  Deber CM 《Biochemistry》2000,39(51):16155-16162
Analyses of transmembrane domains of proteins have revealed that aromatic residues tend to cluster at or near the lipid-water interface of the membrane. To assess protein-membrane interactions of such residues, a viable mutant library was generated of the major coat protein of bacteriophage M13 (a model single membrane-spanning protein) in which one or the other of its interfacial tyrosine residues (Tyr-21 and Tyr-24) is mutated. Using the interfacial tryptophan (Trp-26) as an intrinsic probe, blue shifts in fluorescence emission spectra and quenching constants indicated that mutants with a polar amino acid substitution (such as Y24D or Y24N) are less buried in a deoxycholate micelle environment than in the wild type protein. These polar mutants also exhibited alpha-helix to beta-structure transition temperatures in incremental-heating circular dichroism studies relatively lower than those of wild type and nonpolar mutants (such as Y21V, Y21I, and Y24A), indicating that specific side chains in the lipid-water interface influence local protein-micelle interactions. Mutant Y21F exhibited the highest transition temperature, suggesting that phenylalanine is ostensibly the most effective interfacial anchoring residue. Using phage viability as the assay in a combination of site-directed and saturation mutagenesis experiments, it was further observed that both Tyr residues could not simultaneously be "knocked out". The overall results support the notion that an interfacial Tyr is a primary recognition element for precise strand positioning in vivo, a function that apparently cannot be performed optimally by residues with simple aliphatic character.  相似文献   

13.
14.
I D Johnson  B S Hudson 《Biochemistry》1989,28(15):6392-6400
The effects of detergent [deoxycholate (DOC) and phospholipid [dimyristoylphosphatidylcholine (DMPC)] environments on the rotational dynamics of the single tryptophan residue 26 of bacteriophage M13 coat protein have been investigated by using time-resolved single photon counting measurements of the fluorescence intensity and anisotropy decay. The total fluorescence decay of tryptophan-26 is complex but rather similar in DOC as compared to DMPC when analyzed in terms of a lifetime distribution (exponential series method). This similarity, in conjunction with the almost identical steady-state fluorescence spectra, indicates only minor differences between the tryptophan environments in DOC and DMPC. The reorientational dynamics of tryptophan-26 are dominated by slow rotation of the entire protein in both detergent and phospholipid environments. The resolved anisotropy decay in DOC can be approximated by a simple hydrodynamic model of protein/detergent micelle rotational diffusion, although the data indicative slightly greater complexity in the rotational motion. The tryptophan fluorescence anisotropy is not sensitive to protein conformational changes in DOC detected by nuclear magnetic resonance on the basis of pH independence in the range 7.5-9.1. In DMPC bilayers, restricted tryptophan motion with a correlation time of approximately 2 ns is observed together with a second very slow reorientational component. Resolution of the time constant for this slow rotation is obscured by the tryptophan fluorescence time window being too short to clearly locate its anisotropic limit. The possible contribution made by axial rotational diffusion of the protein to this slow rotational process is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A peptide was fused to the C terminus of the M13 bacteriophage major coat protein (P8), and libraries of P8 mutants were screened to select for variants that displayed the peptide with high efficiency. Over 600 variants were sequenced to compile a comprehensive database of P8 sequence diversity compatible with assembly into the wild-type phage coat. The database reveals that, while the alpha-helical P8 molecule was highly tolerant to mutations, certain functional epitopes were required for efficient incorporation. Three hydrophobic epitopes were located approximately equidistantly along the length of the alpha-helix. In addition, a positively charged epitope was required directly opposite the most C-terminal hydrophobic epitope and on the same side as the other two epitopes. Both ends of the protein were highly tolerant to mutations, consistent with the use of P8 as a scaffold for both N and C-terminal phage display. Further rounds of selection were used to enrich for P8 variants that supported higher levels of C-terminal peptide display. The largest improvements in display resulted from mutations around the junction between P8 and the C-terminal linker, and additional mutations in the N-terminal region were selected for further improvements in display. The best P8 variants improved C-terminal display more than 100-fold relative to the wild-type, and these variants could support the simultaneous display of N and C-terminal fusions. These finding provide information on the requirements for filamentous phage coat assembly, and provide improved scaffolds for phage display technology.  相似文献   

16.
Li W  Suez I  Szoka FC 《Biochemistry》2007,46(29):8579-8591
The major coat protein (pVIII) of M13 phage is of particular interest to structure biologists since it functions in two different environments: during assembly and infection, it interacts with the bacterial lipid bilayer, but in the phage particle, it exists as a protein capsid to protect a closed circular, single-stranded DNA (ssDNA) genome. We synthesized pVIII and a 32mer peptide consisting of the transmembrane and DNA binding domains of pVIII. The 32mer peptide displays typically an alpha-helical structure in trifluroethanol or 0.2 M octylglucoside solutions similar to pVIII. Attachment of polyethylene glycol (PEG) onto the N-terminal of 32mer increased the alpha-helical content and the peptide thermal stability. The peptides were reconstituted with DNA from a detergent solution into a discrete (<200 nm diameter) nanoparticle on both linear double-stranded DNA (dsDNA) and linear ssDNA, where the linear dsDNA is used to mimic the closed circular, ssDNA in M13 phage, upon removal of the detergent. The peptide/DNA particle was an irregular and not a rod-shaped aggregate when imaged by atomic force microscopy. All three peptides underwent a structural transition from alpha-helix to beta-sheet within approximately 1 h of DNA addition to the detergent solution. There was a further decrease in alpha-helical content when the detergent was removed. The presence of anionic (such as octanoic acid) or cationic (such as 1,5-diaminopentane) molecules in the detergent mixture resulted in the retention of the peptide alpha-helical structure. Thus the interaction between the peptide and DNA in octylglucoside is driven by electrostatic forces, and peptide-peptide interactions are responsible for the transition from alpha-helix to beta-sheet conformation in pVIII and its analogues. These results suggest that the assembly process to form a rod-shaped phage is a delicate balance to maintain pVIII in an alpha-helical conformation that requires either an oriented bilayer to solubilize pVIII prior to interaction with the DNA or other phage proteins to nucleate pVIII in the alpha-helical conformation on the DNA.  相似文献   

17.
During infection the major coat protein of the filamentous bacteriophage M13 is in the cytoplasmic membrane of the host Escherichia coli. This study focuses on the configurational properties of the N-terminal part of the coat protein in the membrane-bound state. For this purpose X-Cys substitutions are generated at coat protein positions 3, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23 and 24, covering the N-terminal protein part. All coat protein mutants used are successfully produced in mg quantities by overexpression in E. coli. Mutant coat proteins are labeled and reconstituted into mixed bilayers of phospholipids. Information about the polarity of the local environment around the labeled sites is deduced from the wavelength of maximum emission using AEDANS attached to the SH groups of the cysteines as a fluorescent probe. Additional information is obtained by determining the accessibility of the fluorescence quenchers acrylamide and 5-doxyl stearic acid. By employing uniform coat protein surroundings provided by TFE and SDS, local effects of the backbone of the coat proteins or polarity of the residues could be excluded. Our data suggest that at a lipid to protein ratio around 100, the N-terminal arm of the protein gradually enters the membrane from residue 3 towards residue 19. The hinge region (residues 17-24), connecting the helical parts of the coat protein, is found to be more embedded in the membrane. Substitution of one or more of the membrane-anchoring amino acid residues lysine 8, phenylalanine 11 and leucine 14, results in a rearrangement of the N-terminal protein part into a more extended conformation. The N-terminal arm can also be forced in this conformation by allowing less space per coat protein at the membrane surface by decreasing the lipid to protein ratio. The influence of the phospholipid headgroup composition on the rearrangement of the N-terminal part of the protein is found to be negligible within the range thought to be relevant in vivo. From our experiments we conclude that membrane-anchoring and space-limiting effects are key factors for the structural rearrangement of the N-terminal protein part of the coat protein in the membrane.  相似文献   

18.
The state of the coat protein of bacteriophage M13, reconstituted into amphiphilic media, has been investigated. The in situ conformation of the coat protein has been determined by using circular dichroism. Minimum numbers for the protein aggregation in the system have been determined after disruption of the lipid-protein system and subsequent uptake of the protein in cholate micelles. The aggregational state and conformation of the protein were affected by (1) the method of coat protein isolation (phenol extraction vs cholate isolation), (2) the nature of amphiphiles used (variation in phospholipid headgroups and acyl chains), and (3) the ratio of amphiphiles and protein. Under all conditions, phenol-extracted coat protein was in a predominantly beta-structure and in a highly aggregated polymeric form. Cholate-isolated coat protein was initially oligomeric and contained a substantial amount of alpha-helix. Below an aggregation number of 20, this protein showed a reversible aggregation with no change in conformation. Upon further aggregation, a conformational change was observed, and aggregation was irreversible, resulting in predominantly beta-structured coat protein polymers. This effect was observed upon uptake in phospholipids at low lipid to protein molar ratios (L/P ratios) and with phosphatidylcholines (PC) and phosphatidic acids (PA) containing saturated acyl chains. After reconstitution in phospholipids with unsaturated acyl chains and with phosphatidylglycerols (PG) at high L/P ratios, the original alpha-helix-containing state of the coat protein was maintained. Cross-linking experiments demonstrated that the beta-polymers are able to form reversible superaggregates within the vesicle system. An aggregation-related conformational change mechanism for the coat protein in phospholipid systems is proposed.  相似文献   

19.
Bacteriophage M13 major coat protein has been incorporated at different lipid/protein ratios in lipid bilayers consisting of various ratios of dimyristoylphosphatidylcholine (DMPC) to dimyristoylphosphatidylglycerol (DMPG). Spin-label ESR experiments were performed with phospholipids labeled at the C-14 position of the sn-2 chain. For M13 coat protein recombinants with DMPC alone, the relative association constants were determined for the phosphatidylcholine, phosphatidylglycerol, and phosphatidic acid spin-labels and found to be 1.0, 1.0, and 2.1 relative to the background DMPC, respectively. The number of association sites for each phospholipid on the protein was found to be 4 per protein monomer. The intrinsic off-rates for lipid exchange at the intramembranous surface of the protein in DMPC alone at 30 degrees C were found to be 5 X 10(6), 6 X 10(6), and 2 X 10(6) s-1 for the phosphatidylcholine, phosphatidylglycerol, and phosphatidic acid spin-labels, respectively. Adding DMPG to the DMPC lipid system increased the exchange rates of the lipids on and off the protein. By gel filtration chromatography, it is found that protein aggregation is reduced after addition of DMPG to the lipid system. This is in agreement with measurements of tryptophan fluorescence, which show a decrease in quenching efficiency after introduction of DMPG in the lipid system. The results are interpreted in terms of a model relating the ESR data to the size of the protein-lipid aggregates.  相似文献   

20.
Knowledge about the vertical movement of a protein with respect to the lipid bilayer plane is important to understand protein functionality in the biological membrane. In this work, the vertical displacement of bacteriophage M13 major coat protein in a lipid bilayer is used as a model system to study the molecular details of its anchoring mechanism in a homologue series of lipids with the same polar head group but different hydrophobic chain length. The major coat proteins were reconstituted into 14:1PC, 16:1PC, 18:1PC, 20:1PC, and 22:1PC bilayers, and the fluorescence spectra were measured of the intrinsic tryptophan at position 26 and BADAN attached to an introduced cysteine at position 46, located at the opposite ends of the transmembrane helix. The fluorescence maximum of tryptophan shifted for 700 cm-1 on going from 14:1PC to 22:1PC, the corresponding shift of the fluorescence maximum of BADAN at position 46 was approximately 10 times less (∼ 70 cm-1). Quenching of fluorescence with the spin label CAT 1 indicates that the tryptophan is becoming progressively inaccessible for the quencher with increasing bilayer thickness, whereas quenching of BADAN attached to the T46C mutant remained approximately unchanged. This supports the idea that the BADAN probe at position 46 remains at the same depth in the bilayer irrespective of its thickness and clearly indicates an asymmetrical nature of the protein dipping in the lipid bilayer. The anchoring strength at the C-terminal domain of the protein (provided by two phenylalanine residues together with four lysine residues) was estimated to be roughly 5 times larger than the anchoring strength of the N-terminal domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号