首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Asr is a family of genes that maps to chromosome 4 of tomato. Asr2, a recently reported member of this family, is believed to be regulated by abscisic acid (ABA), stress and ripening. A genomic Asr2 clone has been fully sequenced, and candidate upstream regulatory elements have been identified. To prove that the promoter region is functional in vivo, we fused it upstream of the β-glucuronidase (GUS) reporter gene. The resulting chimeric gene fusion was used for transient expression assays in papaya embryogenic calli and leaves. In addition, the same construct was used to produce transgenic tomato, papaya, tobacco, and potato plants. Asr2 upstream sequences showed promoter function in all of these systems. Under the experimental conditions tested, ABA stimulated GUS expression in papaya and tobacco, but not in tomato and potato systems. Received: 24 March 1997 / Accepted: 26 November 1997  相似文献   

3.
4.
5.
 The levels of different cytokinins, indole-3-acetic acid (IAA) and abscisic acid (ABA) in roots of Glycine max [L.] Merr. cv. Bragg and its supernodulating mutant nts382 were compared for the first time. Forty-eight hours after inoculation with Bradyrhizobium, quantitative and qualitative differences were found in the root's endogenous hormone status between cultivar Bragg and the mutant nts382. The six quantified cytokinins, ranking similarly in each genotype, were present at higher concentrations (30–196% on average for isopentenyl adenosine and dihydrozeatin riboside, respectively) in mutant roots. By contrast, the ABA content was 2-fold higher in Bragg, while the basal levels of IAA [0.53 μmol (g DW)−1, on average] were similar in both genotypes. In 1 mM NO3 -fed Bragg roots 48 h post-inoculation, IAA, ABA and the cytokinins isopentenyl adenine, and isopentenyl adenosine quantitatively increased with respect to uninoculated controls. However, only the two cytokinins increased in the mutant. High NO3 (8 mM) markedly reduced root auxin concentration, and neither genotypic differences nor the inoculation-induced increase in auxin concentration in Bragg was observed under these conditions. Cytokinins and ABA, on the other hand, were little affected by 8 mM NO3 . Root IAA/cytokinin and ABA/cytokinin ratios were always higher in Bragg relative to the mutant, and responded to inoculation (mainly in Bragg) and nitrate (both genotypes). The overall results are consistent with the auxin-burst-control hypothesis for the explanation of autoregulation and supernodulation in soybean. However, they are still inconclusive with respect to the inhibitory effect of NO3 . Received: 16 April 1999 / Accepted: 13 December 1999  相似文献   

6.
The expression pattern of the salT gene was analyzed in different cell types and organs of rice (Oryza sativa L.) in response to saline and hormonal treatments to obtain detailed information on the physiological cues controlling gene expression. Gel blot analysis of RNA and in-situ hybridization performed on seedlings grown for 10 ds in the presence of 1% NaCl revealed that salT was expressed mainly in the younger tissues of the plant. In contrast, 6-week-old plants exhibited maximal salT mRNA accumulation in sheaths of older leaves. In addition, salT was normally expressed in rapidly dividing suspension-cultured cells, but not in quiescent ones. Altogether, these results may indicate that salT expression in each region of the plant is dependent on the metabolic activity of the cells as well as on whether or not they are stressed. The effects of two growth regulators, abscisic acid (ABA) and gibberellic acid, were investigated in combination with the effects of NaCl. Gibberellic acid had a synergistic effect on the induction of the salT gene when combined with 0.5% NaCl, but did not induce salT on its own. At 10 μM, ABA induced salT both in the absence of NaCl and in its presence. Whereas 1 μM ABA acted additively with NaCl to induce gene expression, 5 μM ABA with NaCl was only as effective as NaCl alone. This may indicate that the two stimuli act independently and possibly through antagonistic signal transduction pathways. Received: 26 March 1998 / Accepted: 11 July 1998  相似文献   

7.
8.
β‐Glucosidases (BG) are present in many plant tissues. Among these, abscisic acid (ABA) β‐glucosidases are thought to take part in the adjustment of cellular ABA levels, however the role of ABA‐BG in fruits is still unclear. In this study, through RNA‐seq analysis of persimmon fruit, 10 full‐length DkBG genes were isolated and were all found to be expressed. In particular, DkBG1 was highly expressed in persimmon fruits with a maximum expression 95 days after full bloom (DAFD). We verified that, in vitro, DkBG1 protein can hydrolyze ABA‐glucose ester (ABA‐GE) to release free ABA. Compared with wild‐type, tomato plants that overexpressed DkBG1 significantly upregulated the expression of ABA receptor PYL3/7 genes and showed typical symptoms of ABA hypersensitivity in fruits. DkBG1 overexpression (DkBG1‐OE) accelerated fruit ripening onset by 3–4 days by increasing ABA levels at the pre‐breaker stage and induced early ethylene release compared with wild‐type fruits. DkBG1‐OE altered the expression of ripening regulator NON‐RIPENING (NOR) and its target genes; this in turn altered fruit quality traits such as coloration. Our results demonstrated that DkBG1 plays an important role in fruit ripening and quality by adjusting ABA levels via hydrolysis of ABA‐GE.  相似文献   

9.
Nishiwaki M  Fujino K  Koda Y  Masuda K  Kikuta Y 《Planta》2000,211(5):756-759
Seedlings of carrot (Daucus carota L. cv. Red Cored Chantenay) formed somatic embryos when cultured on medium containing abscisic acid (ABA) as the sole source of growth regulator. The number of embryos per number of seedlings changed depending on the concentration of ABA added to the medium, with a maximum embryo number at 1 × 10−4 M ABA. Seedling age was critical for response to exogenous ABA; no seedling with a hypocotyl longer than 3.0 cm was able to form an embryo. Removal of shoot apices from seedlings completely inhibited the embryogenesis induced by application of exogenous ABA, suggesting that the action of ABA requires some substance(s) that is translocated basipetally from shoot apices through hypocotyls. Histologically, somatic embryos shared common epidermal cells and differentiated not through the formation of embryogenic cell clumps, but directly from epidermal cells. These morphological traits are distinct from those of embryogenesis via formation of embryogenic cell clumps, which has been found in embryogenic carrot cultures established using 2,4-dichlorophenoxyacetic acid or other auxins. These results suggest that ABA acts as a signal substance in stress-induced carrot seedling somatic embryogenesis. Received: 22 April 2000 / Accepted: 8 June 2000  相似文献   

10.
The aim of this work was to evaluate phytohormone biosynthesis, siderophores production, and phosphate solubilization in three strains (E109, USDA110, and SEMIA5080) of Bradyrhizobium japonicum, most commonly used for inoculation of soybean and nonlegumes in USA, Canada, and South America. Siderophore production and phosphate solubilization were evaluated in selective culture conditions, which had negative results. Indole-3-acetic acid (IAA), gibberellic acid (GA3), and abscisic acid (ABA) production were analyzed by gas chromatography–mass spectrometry (GC-MS). Ethylene and zeatin biosynthesis were determined by GS–flame ionization detection and high-performance liquid chromatography (HPLC-UV), respectively. IAA, zeatin, and GA3 were found in all three strains; however, their levels were significantly higher (p < 0.01) in SEMIA5080 (3.8 μg ml−1), USDA110 (2.5 μg ml−1), and E109 (0.87 μg ml−1), respectively. ABA biosynthesis was detected only in USDA110 (0.019 μg ml−1). Ethylene was found in all three strains, with highest production rate (18.1 ng ml−1 h−1) in E109 cultured in yeast extract mannitol medium plus l-methionine. This is the first report of IAA, GA3, zeatin, ethylene, and ABA production by B. japonicum in pure cultures, using quantitative physicochemical methodology. The three strains have differential capability to produce the five major phytohormones and this fact may have an important technological implication for inoculant formulation.  相似文献   

11.
12.
13.
It is well known that abscisic acid (ABA) antagonizes gibberellin (GA)-promoted seed germination. Recent circumstantial evidence suggests that salicylic acid (SA) also inhibits seed germination in maize and Arabidopsis. Our study shows that SA blocks barley seed germination in a dosage dependent manner. As an initial effort to addressing the mechanism controlling the crosstalk of SA, GA and ABA signaling in barley, we studied the regulation of α-amylases by SA and a WRKY gene whose expression is modulated by these hormones. Assays of α-amylase activity reveal that GA-induced α-amylase production in aleurone cells is inhibited by bioactive SA, but not its analogs, 3-hydroxybenzoic acid and 4-hydroxybenzoic acid. This inhibitory effect is unlikely due to repressing α-amylase secretion or inhibiting α-amylase enzyme activities. Northern blot analyses indicate that SA suppresses GA-induced expression of a barley low pI α-amylase gene (Amy32b). Because our previous data indicate that ABA-inducible and GA-suppressible WRKY genes inhibit the expression of α-amylase genes in rice, we studied the steady state mRNA levels of a barley WRKY gene, HvWRKY38. The expression of HvWRKY38 in barley aleurone cells is down-regulated by GA, but up-regulated by SA and ABA. However, the regulation of HvWRKY38 by SA appears to be different from that of ABA in term of the kinetics and levels of induction. Over-expression of HvWRKY38 in aleurone cells by particle bombardment blocks GA induction of the Amy32b promoter reporter construct (Amy32b-GUS). Therefore, HvWRKY38 might serve as a converging node of SA and ABA signal pathways involved in suppressing GA-induced seed germination. Zhen Xie and Zhong-Lin Zhang contributed equally to this work.  相似文献   

14.
Cho HJ  Farrand SK  Noel GR  Widholm JM 《Planta》2000,210(2):195-204
Cotyledon explants of 10 soybean [Glycine max (L.) Merr.] cultivars were inoculated with Agrobacterium rhizogenes strain K599 with and without binary vectors pBI121 or pBINm-gfp5-ER possessing both neomycin phosphotransferase II (nptII) and β-glucuronidase (gus) or nptII and green fluorescent protein (gfp) genes, respectively. Hairy roots were produced from the wounded surface of 54–95% of the cotyledon explants on MXB selective medium containing 200 μg ml−1 kanamycin and 500 μg ml−1 carbenicillin. Putative individual transformed hairy roots were identified by cucumopine analysis and were screened for transgene incorporation using polymerase chain reaction. All of the roots tested were found to be co-transformed with T-DNA from the Ri-plasmid and the transgene from the binary vectors. Southern blot analysis confirmed the presence of the 35S-gfp5 gene in the plant genomes. Transgene expression was also confirmed by histochemical GUS assay and Western blot analysis for the GFP. Attempts to induce shoot formation from the hairy roots failed. Infection of hairy roots of the soybean cyst nematode (Heterodera glycines Ichinohe)-susceptible cultivar, Williams 82, with eggs of H. glycines race 1, resulted in the development of mature cysts about 4–5 weeks after inoculation. Thus the soybean cyst nematode could complete its entire life cycle in transformed soybean hairy-root cultures expressing GFP. This system should be ideal for testing genes that might impart resistance to soybean cyst nematode. Received: 13 July 1999 / Accepted: 8 August 1999  相似文献   

15.
16.
17.
18.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

19.
Mitogen‐activated protein kinase (MAPK) cascades are involved in plant development, stress responses and hormonal signal transduction. MAPK kinases (MAPKKs), as the key nodes in these cascades, link MAPKs and MAPKK kinases (MAPKKKs). In this study, GhMKK4, a novel group C MAPKK gene from cotton (Gossypium hirsutum), was isolated and identified. Its expression can be induced by various stresses and signalling molecules. The overexpression of GhMKK4 in Nicotiana benthamiana enhanced its susceptibility to bacterial and fungal pathogens, but had no significant effects on salt or drought tolerance. Notably, the overexpressing plants showed increased sensitivity to abscisic acid (ABA) and gibberellin A3 (GA3), and ABA and gibberellin (GA) signalling were affected on infection with Ralstonia solanacearum bacteria. Furthermore, the overexpressing plants showed more reactive oxygen species (ROS) accumulation and stronger inhibition of catalase (CAT), a ROS‐scavenging enzyme, than control plants after salicylic acid (SA) treatment. Interestingly, two genes encoding ornithine decarboxylase (ODC) and S‐adenosylmethionine decarboxylase (SAMDC), the key enzymes in polyamine synthesis, exhibited reduced R. solanacearum‐induced expression in overexpressing plants. These findings broaden our knowledge about the functions of MAPKKs in diverse signalling pathways and the negative regulation of disease resistance in the cotton crop.  相似文献   

20.
Although the hormones, gibberellin and auxin, are known to play a role in the initiation of fruits, no such function has yet been demonstrated for abscisic acid (ABA). However, ABA signaling and ABA responses are high in tomato (Solanum lycopersicum L.) ovaries before pollination and decrease thereafter (Vriezen et al. in New Phytol 177:60–76, 2008). As a first step to understanding the role of ABA in ovary development and fruit set in tomato, we analyzed ABA content and the expression of genes involved in its metabolism in relation to pollination. We show that ABA levels are relatively high in mature ovaries and decrease directly after pollination, while an increase in the ABA metabolite dihydrophaseic acid was measured. An important regulator of ABA biosynthesis in tomato is 9-cis-epoxy-carotenoid dioxygenase (LeNCED1), whose mRNA level in ovaries is reduced after pollination. The increased catabolism is likely caused by strong induction of one of four newly identified putative (+)ABA 8′-hydroxylase genes. This gene was named SlCYP707A1 and is expressed specifically in ovules and placenta. Transgenic plants, overexpressing SlCYP707A1, have reduced ABA levels and exhibit ABA-deficient phenotypes suggesting that this gene encodes a functional ABA 8′-hydroxylase. Gibberellin and auxin application have different effects on the LeNCED1 and SlCYP707A1 gene expression. The crosstalk between auxins, gibberellins and ABA during fruit set is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号