首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The gene for Hsp30, the only known alpha-crystallin-related heat shock protein of Neurospora crassa, was disrupted by repeat-induced point mutagenesis, leading to loss of cell survival at high temperature. Hsp30, which is not synthesized at 30 degrees C, associates reversibly with the mitochondria at high temperature (45 degrees C). In this study, we found that import of selected proteins into internal compartments of mitochondria, following their synthesis in the cytosol, was severely impaired at high temperature in a strain mutant in Hsp30. After 70 min of cell incubation at 45 degrees C, most matrix, inner membrane, and intermembrane-space proteins tested were reduced in import by about 50-70% in the mutant, as compared to wild-type cells. In contrast, assembly of selected proteins into the outer mitochondrial membrane was not reduced, except for one component of the preprotein translocase complex of the mitochondrial outer membrane. Three proteins of this complex co-immunoprecipitated with Hsp30 of wild-type cells incubated at 45 degrees C. We propose that Hsp30 interacts with the preprotein translocase of the mitochondrial outer membrane and that it chaperones the activity of one or more components of this translocase complex at high temperature.  相似文献   

3.
A number of heat shock proteins in Myxococcus xanthus were previously identified by two-dimensional (2D) gel electrophoresis. One of these protein was termed Mx Hsp16.6, and the gene encoding Mx Hsp16.6 was isolated. Mx Hsp16.6 consists of 147 amino acid residues and has an estimated molecular weight of 16,642, in accordance with the apparent molecular mass in the 2D gel. An alpha-crystallin domain, typically conserved in small heat shock proteins, was found in Mx Hsp16.6. Mx Hsp16.6 was not detected during normal vegetative growth but was immediately induced after heat shock. Expression of the hsp16.6 gene was not induced by other stresses, such as starvation, oxidation, and high osmolarity. Mx Hsp16.6 was mostly localized in particles formed after heat shock and precipitated by low-speed centrifugation. Furthermore, Mx Hsp16.6 was detected in highly electron-dense particles in heat-shocked cells by immunoelectron microscopy, suggesting that it forms large complexes with heat-denatured proteins. An insertion mutation in the hsp16.6 gene resulted in lower viability during heat shock and lower acquired thermotolerance. Therefore, it is likely that Mx Hsp16.6 plays critical roles in the heat shock response in M. xanthus.  相似文献   

4.
The respiratory response to heat shock in Neurospora crassa   总被引:2,自引:0,他引:2  
A sharp decrease in oxygen uptake occurred in Neurospora crassa cells that were transferred from 30 degrees C to 45 degrees C, and the respiration that resumed later at 45 degrees C was cyanide-insensitive. Energization of mitochondria, measured in vivo with fluorescence microscopy and a carbocyanine dye, also declined sharply in cells at 45 degrees C. Electron microscopy showed no changes in mitochondrial complexity; however, the cytoplasm of heat-shocked cells was deficient in glycogen granules.  相似文献   

5.
In this study we characterized the chaperone functions of Xenopus recombinant Hsp30C and Hsp30D by using an in vitro rabbit reticulocyte lysate (RRL) refolding assay system as well as a novel in vivo Xenopus oocyte microinjection assay. Whereas heat- or chemically denaturated luciferase (LUC) did not regain significant enzyme activity when added to RRL or microinjected into Xenopus oocytes, compared with native LUC, denaturation of LUC in the presence of Hsp30C resulted in a reactivation of enzyme activity up to 80-100%. Recombinant Hsp30D, which differs from Hsp30C by 19 amino acids, was not as effective as its isoform in preventing LUC aggregation or maintaining it in a folding-competent state. Removal of the first 17 amino acids from the N-terminal region of Hsp30C had little effect on its ability to maintain LUC in a folding-competent state. However, deletion of the last 25 residues from the C-terminal end dramatically reduced Hsp30C chaperone activity. Coimmunoprecipitation and immunoblot analyses revealed that Hsp30C remained associated with heat-denatured LUC during incubation in reticulocyte lysate and that the C-terminal mutant exhibited reduced affinity for unfolded LUC. Finally, we found that Hsc70 present in RRL interacted only with heat-denatured LUC bound to Hsp30C. These findings demonstrate that Xenopus Hsp30 can maintain denatured target protein in a folding-competent state and that the C-terminal end is involved in this function.  相似文献   

6.
We are analyzing highly conserved heat shock genes of unknown or unclear function with the aim of determining their cellular role. Hsp15 has previously been shown to be an abundant nucleic acid-binding protein whose synthesis is induced massively at the RNA level upon temperature upshift. We have now identified that the in vivo target of Hsp15 action is the free 50S ribosomal subunit. Hsp15 binds with very high affinity (K(D) <5 nM) to this subunit, but only when 50S is free, not when it is part of the 70S ribosome. In addition, the binding of Hsp15 appears to correlate with a specific state of the mature, free 50S subunit, which contains bound nascent chain. This provides the first evidence for a so far unrecognized abortive event in translation. Hsp15 is suggested to be involved in the recycling of free 50S subunits that still carry a nascent chain. This gives Hsp15 a very different functional role from all other heat shock proteins and points to a new aspect of translation.  相似文献   

7.
There are several reports describing participation of small heat shock proteins (sHsps) in cellular protein quality control. In this study, we estimated the endoplasmic reticulum (ER) stress-induced response of Hsp27 and alphaB-crystallin in mammalian cells. Treatment targeting the ER with tunicamycin or thapsigargin induced the phosphorylation of Hsp27 but not of alphaB-crystallin in U373 MG cells, increase being observed after 2-10 h and decline at 24 h. Similar phosphorylation of Hsp27 by ER stress was also observed with U251 MG and HeLa but not in COS cells and could be blocked using SB203580, an inhibitor of p38 MAP kinase. Other protein kinase inhibitors, like G?6983, PD98059, and SP600125, inhibitors of protein kinase C (PKC), p44/42 MAP kinase, and JNK, respectively, were without major influence. Prolonged treatment with tunicamycin but not thapsigargin for 48 h caused the second induction of the phosphorylation of Hsp27 in U251 MG cells. Under these conditions, the intense perinuclear staining of Hsp27, with some features of aggresomes, was observed in 10%-20% of the cells.  相似文献   

8.
We employed whole-mount in situ hybridization and immunohistochemistry to study the spatial pattern of hsp30 gene expression in normal and heatshocked embryos during Xenopus laevis development. Our findings revealed that hsp30 mRNA accumulation was present constitutively only in the cement gland of early and midtailbud embryos, while hsp30 protein was detected until at least the early tadpole stage. Heat shock-induced accumulation of hsp30 mRNA and protein was first observed in early and midtailbud embryos with preferential enrichment in the cement gland, somitic region, lens placode, and proctodeum. In contrast, cytoskeletal actin mRNA displayed a more generalized pattern of accumulation which did not change following heat shock. In heat shocked midtailbud embryos the enrichment of hsp30 mRNA in lens placode and somitic region was first detectable after 15 min of a 33 degrees C heatshock. The lowest temperature capable of inducing this pattern was 30 degrees C. Placement of embryos at 22 degrees C following a 1-h 33 degrees C heat shock resulted in decreased hsp30 mRNA in all regions with time, although enhanced hsp30 mRNA accumulation still persisted in the cement gland after 11 h compared to control. In late tailbud embryos the basic midtailbud pattern of hsp30 mRNA accumulation was enhanced with additional localization to the spinal cord as well as enrichment across the embryo surface. These studies demonstrate that hsp30 gene expression can be detected constitutively in the cement gland of tailbud embryos and that heat shock results in a preferential accumulation of hsp30 mRNA and protein in certain tissues.  相似文献   

9.
Unfolding proteins are prevented from irreversible aggregation by small heat shock proteins (sHsps) through interactions that depend on a dynamic equilibrium between sHsp subunits and sHsp oligomers. A chloroplast-localized sHsp, Hsp21, provides protection to client proteins to increase plant stress resistance. Structural information is lacking concerning the oligomeric conformation of this sHsp. We here present a structure model of Arabidopsis thaliana Hsp21, obtained by homology modeling, single-particle electron microscopy, and lysine-specific chemical crosslinking. The model shows that the Hsp21 subunits are arranged in two hexameric discs, similar to a cytosolic plant sHsp homolog that has been structurally determined after crystallization. However, the two hexameric discs of Hsp21 are rotated by 25° in relation to each other, suggesting a role for global dynamics in dodecamer function.  相似文献   

10.
The interaction of the heat shock factor (HSF) with the heat shock element (HSE) was determined by a non-radioactive electrophoretic mobility shift assay, in order to analyze HSF regulation in Neurospora crassa. HSF binds to HSE under normal, non-stress conditions and is thus constitutively trimerized. Upon heat shock, the HSF-HSE complex shows a retarded mobility. This was also observed in Saccharomyces cerevisiae, where this mobility shift was shown to be due to HSF phosphorylation [Sorger and Pelham (1988) Cell 54, 855-864]. In N. crassa, HSE-dependent electrophoretic mobility shift is temperature- and time-dependent. Under normal growth conditions, the HSF is located in the cytoplasm as well as in the nucleus. In germinating conidia the HSF shows a retarded mobility typical for heat shock even at normal growth temperatures. No HSF-dependent mobility shift was detectable in aerial hyphae.  相似文献   

11.
Drosophila melanogaster has four main small heat shock proteins (Hsps), D. melanogaster Hsp22 (DmHsp22), Hsp23 (DmHsp23), Hsp26 (DmHsp26), and Hsp27 (DmHsp27). These proteins, although they have high sequence homology, show distinct developmental expression patterns. The function(s) of each small heat shock protein is unknown. DmHsp22 is shown to localize in mitochondria both in D. melanogaster S2 cells and after heterologous expression in mammalian cells. Fractionation of mitochondria indicates that DmHsp22 resides in the mitochondrial matrix, where it is found in oligomeric complexes, as shown by sedimentation and gel filtration analysis and by cross-linking experiments. Deletion analysis using a DmHsp22-EGFP construct reveals that residues 1-17 and an unknown number of residues between 17-28 are necessary for import. Site-directed mutagenesis within a putative mitochondrial motif (WRMAEE) at positions 8-13 shows that the first four residues are necessary for mitochondrial localization. Immunoprecipitation results indicate that there is no interaction between DmHsp22 and the other small heat shock proteins. The mitochondrial localization of this small Hsp22 of Drosophila and its high level of expression in aging suggests a role for this small heat shock protein in protection against oxidative stress.  相似文献   

12.
McHaourab HS  Lin YL  Spiller BW 《Biochemistry》2012,51(25):5105-5112
How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.  相似文献   

13.
Small heat shock proteins (sHSPs) are dynamic oligomeric proteins that bind unfolding proteins and protect them from irreversible aggregation. This binding results in the formation of sHSP-substrate complexes from which substrate can later be refolded. Interactions between sHSP and substrate in sHSP-substrate complexes and the mechanism by which substrate is transferred to ATP-dependent chaperones for refolding are poorly defined. We have established C-terminal affinity-tagged sHSPs from a eukaryote (pea HSP18.1) and a prokaryote (Synechocystis HSP16.6) as tools to investigate these issues. We demonstrate that sHSP subunit exchange for HSP18.1 and HSP16.6 is temperature-dependent and rapid at the optimal growth temperature for the organism of origin. Increasing the ratio of sHSP to substrate during substrate denaturation decreased sHSP-substrate complex size, and accordingly, addition of substrate to pre-formed sHSP-substrate complexes increased complex size. However, the size of pre-formed sHSP-substrate complexes could not be reduced by addition of more sHSP, and substrate could not be observed to transfer to added sHSP, although added sHSP subunits continued to exchange with subunits in sHSP-substrate complexes. Thus, although some number of sHSP subunits within complexes remain dynamic and may be important for complex structure/solubility, association of substrate with the sHSP does not appear to be similarly dynamic. These observations are consistent with a model in which ATP-dependent chaperones associate directly with sHSP-bound substrate to initiate refolding.  相似文献   

14.
We applied different methods (differential scanning calorimetry, circular dichroism, Fourier transform infrared spectroscopy, and intrinsic fluorescence) to investigate the thermal-induced changes in the structure of small heat shock protein Hsp22. It has been shown that this protein undergoes thermal-induced unfolding that occurs within a very broad temperature range (from 27 °C to 80 °C and above), and this is accompanied by complete disappearance of α-helices, significant decrease in β-sheets content, and by pronounced changes in the intrinsic fluorescence. The results confirm predictions that Hsp22 belongs to the family of intrinsically disordered proteins (IDP) with certain parts of its molecule (presumably, in the α-crystallin domain) retaining folded structure and undergoing reversible thermal unfolding. The results are also discussed in terms of downhill folding scenario.  相似文献   

15.
The recently published review by Dreiza et al. (Cell Stress and Chaperones DOI ) dealing with the functional role of HSPB6 in muscle regulation is critically analyzed. Published data indicate that the chaperone-like activity of HSPB6 is comparable with that of HSPB5 and that phosphorylation of HSPB6 does not affect its oligomeric structure. Different hypotheses concerning the molecular mechanisms of HSPB6 action on smooth muscle contraction and on the reorganization of the cytoskeleton are compared, and it is concluded that although HSPB6 is not a genuine actin-binding protein, it can affect the actin cytoskeleton indirectly. Phosphorylated HSPB6 interacts with 14-3-3 and thereby displaces other binding partners of 14-3-3; among them, certain phosphatases, protein kinases, and various actin-binding proteins, which can participate in the reorganization of the actin cytoskeleton. In addition, HSPB6 seems to regulate the activity of certain protein kinases. All of these processes are dependent on HSPB6 phosphorylation which in turn might be regulated by the formation of heterooligomeric complexes of HSPB6 with other small heat shock proteins.  相似文献   

16.
Human Hsp27 oligomerizes in vivo in a phosphorylation-dependent manner that regulates the functional activity of the protein. We have studied the self-association of wild-type Hsp27 by both sedimentation velocity and sedimentation equilibrium analysis and established that the protein forms an equilibrium mixture of monomers/dimers, tetramers, 12-mers and 16-mers (20 mM Tris-HCl (pH 8.4), 100 mM NaCl, 20 degrees C). Corresponding analysis of the S15D/S78D/S82D triple variant, which is believed to mimic the behavior of phosphorylated Hsp27, establishes that this form of the protein forms primarily monomers and dimers but also forms a small fraction of very large oligomers. Variants in which critical N-terminal sequences have been deleted exhibit oligomerization behavior that is intermediate between that of the triple variant and the wild-type protein. On the other hand a C-terminal sequence deletion variant forms larger oligomers than does the wild-type protein, but also exhibits a greater fraction of smaller oligomers. Notably, the presence of an N-terminal His6-tag induces formation of much larger oligomers than observed for any other form of the protein. The results of this work establish that the wild-type protein forms smaller oligomers than previously believed, define the roles played by various structural domains in Hsp27 oligomerization, and provide improved molecular probes with better-defined properties for the design of future experiments.  相似文献   

17.
Small heat shock proteins (sHsps) usually exist as oligomers that undergo dynamic oligomeric dissociation/re-association, with the dissociated oligomers as active forms to bind substrate proteins under heat shock conditions. In this study, however, we found that Hsp16.3, one sHsp from Mycobacterium tuberculosis, is able to sensitively modulate its chaperone-like activity in a range of physiological temperatures (from 25 to 37.5 degrees C) while its native oligomeric size is still maintained. Further analysis demonstrated that Hsp16.3 exposes higher hydrophobic surfaces upon temperatures increasing and that a large soluble complex between Hsp16.3 and substrate is formed only in the condition of heating temperature up to 35 and 37.5 degrees C. Structural analysis by fluorescence anisotropy showed that Hsp16.3 nonameric structure becomes more dynamic and variable at elevated temperatures. Moreover, subunit exchange between Hsp16.3 oligomers was found to occur faster upon temperatures increasing as revealed by fluorescence energy resonance transfer. These observations indicate that Hsp16.3 is able to modulate its chaperone activity by adjusting the dynamics of oligomeric dissociation/re-association process while maintaining its static oligomeric size unchangeable. A kinetic model is therefore proposed to explain the mechanism of sHsps-binding substrate proteins through oligomeric dissociation. The present study also implied that Hsp16.3 is at least capable of binding non-native proteins in vivo while expressing in the host organism that survives at 37 degrees C.  相似文献   

18.
Heat shock proteins are important for maintaining protein homeostasis and cell survival. Among different classes of highly conserved Hsps, low molecular weight Hsps (sHsps) have significant place, particularly Hsp27, whose role has been demonstrated in wide range of biological processes, including development, immunity, diseases and therapy. In this review, the structure and functions of Hsp27 and related genes, their role in different cellular processes as well as in stress tolerance, is highlighted.  相似文献   

19.
Small heat shock proteins (sHsps) are an evolutionary conserved class of ATP-independent chaperones that protect cells against proteotoxic stress. sHsps form assemblies with aggregation-prone misfolded proteins, which facilitates subsequent substrate solubilization and refolding by ATP-dependent Hsp70 and Hsp100 chaperones. Substrate solubilization requires disruption of sHsp association with trapped misfolded proteins. Here, we unravel a specific interplay between Hsp70 and sHsps at the initial step of the solubilization process. We show that Hsp70 displaces surface-bound sHsps from sHsp–substrate assemblies. This Hsp70 activity is unique among chaperones and highly sensitive to alterations in Hsp70 concentrations. The Hsp70 activity is reflected in the organization of sHsp–substrate assemblies, including an outer dynamic sHsp shell that is removed by Hsp70 and a stable core comprised mainly of aggregated substrates. Binding of Hsp70 to the sHsp/substrate core protects the core from aggregation and directs sequestered substrates towards refolding pathway. The sHsp/Hsp70 interplay has major impact on protein homeostasis as it sensitizes substrate release towards cellular Hsp70 availability ensuring efficient refolding of damaged proteins under favourable folding conditions.  相似文献   

20.
Treatment of Neurospora crassa with 0.1 microgram of cycloheximide per ml, a concentration which inhibited protein synthesis by about 70%, resulted in the greatly enhanced synthesis of at least three polypeptide bands with estimated molecular weights of 88,000, 30,000, and 28,000. A temperature shift from 25 to 37 degrees C resulted in the appearance of a single new polypeptide band of 70,000 daltons, the same size as the major heat shock-induced proteins observed in species of Drosophila and Dictyostelium. Synthesis of the cycloheximide-stimulated polypeptide bands was on cytoplasmic ribosomes rather than on mitochondrial ribosomes, as incorporation of isotope into the polypeptide bands was inhibited by 1.0 microgram of cycloheximide per ml but not by 1 mg of chloramphenicol per ml. In a mutant with cycloheximide-resistant ribosomes, 0.1 microgram of cycloheximide per ml failed to alter the pattern of protein synthesis from that of the controls. It is suggested that the new synthesis of the polypeptide bands reflects specific mechanisms of adaptation to different kinds of environmental stress, including inhibition of protein synthesis and temperature increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号