首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IscA was proposed to be involved in the ironsulfur cluster assembly encoded by the iscSUA operon, but the role of IscA in the iron-sulfur cluster assembly still remains controversial. In our previous study, the IscA from A. ferrooxidans was successfully expressed in Escherichia coli, and purified to be a [Fe4S4]-cluster-containing protein. Cys35, Cys99, and Cys101 were important residues in ligating with the [Fe4S4] cluster. In this study, Asp97 was found to be another ligand for the iron-sulfur cluster binding according to sitedirected mutagenesis results. Molecular modeling for the IscA also showed that Asp97 was a strong ligand with the [Fe4S4] cluster, which was in good agreement with the experimental results. Thus, the [Fe4S4] cluster in IscA from A. ferrooxidans was ligated by three cysteine residues and one aspartic acid.  相似文献   

2.
IscA was proposed to be involved in the iron-sulfur cluster assembly in Acidithiobacillus ferrooxidans encoded by the iscSUA operon, but the role of IscA in the iron-sulfur cluster assembly still remains controversial. In this study, the IscA from A. ferrooxidans ATCC 23270 was successfully expressed in Escherichia coli, and purified by affinity chromatography to homogeneity. To our surprise, the purified IscA was observed to be an iron-sulfur protein according to MALDI-TOF-MS and spectra results, which was capable of recruiting intracellular iron and sulfur and hosted a stable [Fe4S4] cluster. Site-directed mutagenesis for the protein revealed that Cys35, Cys99 and Cys101 were in ligating with the [Fe4S4] cluster. The [Fe4S4] cluster could be assembled in apoIscA with Fe2+ and sulfide in vitro. The IscA from A. ferrooxidans may function as a scaffold protein for the pre-assembly of Fe-S cluster and then transfer it to target proteins in A. ferrooxidans.  相似文献   

3.
Ferredoxin is a typical iron-sulfur protein that is ubiquitous in biological redox systems. This study investigates the in vitro assembly of a [Fe2S2] cluster in the ferredoxin from Acidithiobacillus ferrooxidans in the presence of three scaffold proteins: IscA, IscS, and IscU. The spectra and MALDI-TOF MS results for the reconstituted ferredoxin confirm that the iron-sulfur cluster was correctly assembled in the protein. The inactivation of cysteine desulfurase by L-allylglycine completely blocked any [Fe2S2] cluster assembly in the ferredoxin in E. coli, confirming that cysteine desulfurase is an essential component for iron-sulfur cluster assembly. The present results also provide strong evidence that [Fe2S2] cluster assembly in ferredoxin follows the AUS pathway.  相似文献   

4.
It has been shown that the so-called scaffold proteins are vital in Fe-S cluster biosynthesis by providing an intermediate site for the assembly of Fe-S clusters. However, since no structural information on such scaffold proteins with bound Fe-S cluster intermediates is available, the structural basis of the core of Fe-S cluster biosynthesis remains poorly understood. Here we report the first Fe-S cluster-bound crystal structure of a scaffold protein, IscA, from Thermosynechococcus elongatus, which carries three strictly conserved cysteine residues. Surprisingly, one partially exposed [2Fe-2S] cluster is coordinated by two conformationally distinct IscA protomers, termed alpha and beta, with asymmetric cysteinyl ligation by Cys37, Cys101, Cys103 from alpha and Cys103 from beta. In the crystal, two alphabeta dimers form an unusual domain-swapped tetramer via central domains of beta protomers. Together with additional biochemical data supporting its physiologically relevant configuration, we propose that the unique asymmetric Fe-S cluster coordination and the resulting distinct conformational stabilities of the two IscA protomers are central to the function of IscA-type Fe-S cluster biosynthetic scaffold.  相似文献   

5.
Agar JN  Krebs C  Frazzon J  Huynh BH  Dean DR  Johnson MK 《Biochemistry》2000,39(27):7856-7862
Iron-sulfur cluster biosynthesis in both prokaryotic and eukaryotic cells is known to be mediated by two highly conserved proteins, termed IscS and IscU in prokaryotes. The homodimeric IscS protein has been shown to be a cysteine desulfurase that catalyzes the reductive conversion of cysteine to alanine and sulfide. In this work, the time course of IscS-mediated Fe-S cluster assembly in IscU was monitored via anaerobic anion exchange chromatography. The nature and properties of the clusters assembled in discrete fractions were assessed via analytical studies together with absorption, resonance Raman, and M?ssbauer investigations. The results show sequential cluster assembly with the initial IscU product containing one [2Fe-2S](2+) cluster per dimer converting first to a form containing two [2Fe-2S](2+) clusters per dimer and finally to a form that contains one [4Fe-4S](2+) cluster per dimer. Both the [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU are reductively labile and are degraded within minutes upon being exposed to air. On the basis of sequence considerations and spectroscopic studies, the [2Fe-2S](2+) clusters in IscU are shown to have incomplete cysteinyl ligation. In addition, the resonance Raman spectrum of the [4Fe-4S](2+) cluster in IscU is best interpreted in terms of noncysteinyl ligation at a unique Fe site. The ability to assemble both [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU supports the proposal that this ubiquitous protein provides a scaffold for IscS-mediated assembly of clusters that are subsequently used for maturation of apo Fe-S proteins.  相似文献   

6.
7.
Ugulava NB  Gibney BR  Jarrett JT 《Biochemistry》2000,39(17):5206-5214
Biotin synthase catalyzes the insertion of a sulfur atom into the saturated C6 and C9 carbons of dethiobiotin. This reaction has long been presumed to occur through radical chemistry, and recent experimental results suggest that biotin synthase belongs to a family of enzymes that contain an iron-sulfur cluster and reductively cleave S-adenosylmethionine, forming an enzyme or substrate radical, 5'-deoxyadenosine, and methionine. Biotin synthase (BioB) is aerobically purified as a dimer of 38 kDa monomers that contains two [2Fe-2S](2+) clusters per dimer. Maximal in vitro biotin synthesis requires incubation of BioB with dethiobiotin, AdoMet, reductants, exogenous iron, and crude bacterial protein extracts. It has previously been shown that reduction of BioB with dithionite in 60% ethylene glycol produces one [4Fe-4S](2+/1+) cluster per dimer. In the present work, we use UV/visible and electron paramagnetic resonance spectroscopy to show that [2Fe-2S] to [4Fe-4S] cluster conversion occurs through rapid dissociation of iron from the protein followed by rate-limiting reassociation. While in 60% ethylene glycol the product of dithionite reduction is one [4Fe-4S](2+) cluster per dimer, the product in water is one [4Fe-4S](1+) cluster per dimer. Further, incubation with excess iron, sulfide, and dithiothreitol produces protein that contains two [4Fe-4S](2+) clusters per dimer; subsequent reduction with dithionite produces two [4Fe-4S](1+) clusters per BioB dimer. BioB that contains two [4Fe-4S](2+/1+) clusters per dimer is rapidly and reversibly reduced and oxidized, suggesting that this is the redox-active form of the iron-sulfur cluster in the anaerobic enzyme.  相似文献   

8.
Among the iron‐sulphur cluster assembly proteins encoded by gene cluster iscSUAhscBAfdx in Escherichia coli, IscA has a unique and strong iron binding activity and can provide iron for iron‐sulphur cluster assembly in proteins in vitro. Deletion of IscA and its paralogue SufA results in an E. coli mutant that fails to assemble [4Fe‐4S] clusters in proteins under aerobic conditions, suggesting that IscA has a crucial role for iron‐sulphur cluster biogenesis. Here we report that among the iron‐sulphur cluster assembly proteins, IscA also has a strong and specific binding activity for Cu(I) in vivo and in vitro. The Cu(I) centre in IscA is stable and resistant to oxidation under aerobic conditions. Mutation of the conserved cysteine residues that are essential for the iron binding in IscA abolishes the copper binding activity, indicating that copper and iron may share the same binding site in the protein. Additional studies reveal that copper can compete with iron for the metal binding site in IscA and effectively inhibits the IscA‐mediated [4Fe‐4S] cluster assembly in E. coli cells. The results suggest that copper may not only attack the [4Fe‐4S] clusters in dehydratases, but also block the [4Fe‐4S] cluster assembly in proteins by targeting IscA in cells.  相似文献   

9.
10.
IscA homologues are involved in iron-sulfur cluster biosynthesis. In the non-nitrogen-fixing cyanobacterium Synechocystis PCC 6803, there are two IscA homologues, SLR1417 and SLR1565 (designated IscA1 and IscA2), of which only IscA2 exists as a protein complex with the HEAT-repeat-containing protein, SLR1098 (IaiH). We observed that the absorption spectrum of the recombinant IscA2/IaiH complex resembles that of IscA2 alone, although it is sharper. In the presence of dithiothreitol, the [2Fe-2S] cluster of IscA2 alone, but not of the IscA2/IaiH complex, became reductively labile upon the addition of sodium dithionite. This implies that the IscA2 moiety of the [2Fe-2S] cluster is stabilized by the presence of IaiH. The [2Fe-2S] cluster of the IscA2/IaiH complex was destabilized by sodium dithionite in the absence of dithiothreitol, suggesting that the in vivo stability of the iron-sulfur cluster in the IscA2/IaiH complex is influenced by the redox state of cellular thiols. When any one of three conserved cysteine residues in IscA2, potential ligands for the [2Fe-2S] cluster, was replaced with serine, the amount of assembled [2Fe-2S] cluster and protein complex was significantly reduced in E. coli cells. The cysteine mutated IscA2/IaiH complexes that were present all contained a [2Fe-2S]-like cluster suggesting that the assembly of a stable iron-sulfur cluster bound to IscA2 is required for efficient and stable complex formation. Truncated IaiH proteins were analyzed using the yeast two-hybrid assay to identify the essential domain of IaiH that interacts physically with IscA2. At least 2 of the 5 N-terminal HEAT repeats of IaiH were found to be required for interaction with IscA2.  相似文献   

11.
Desulfovibrio africanus ferredoxin III is a protein (Mr 6585) containing one [3Fe-4S]1+,0 and one [4Fe-4S]2+,1+ core cluster when aerobically isolated. The amino acid sequence contains only seven cysteine residues, the minimum required to ligand these two clusters. Cyclic voltammery by means of direct electrochemistry at a pyrolytic-graphite-'edge' electrode promoted by neomycin shows that, when reduced, the [3Fe-4S]0 centre reacts rapidly with Fe(II) ion to form a [4Fe-4S]2+ cluster. The latter, which can be reduced at a redox potential similar to that of the other [4Fe-4S] cluster, must include non-thiolate ligation. We propose that the carboxylate side chain of aspartic acid-14 is the most likely candidate, since this amino acid occupies the position of a cysteine residue in the sequence typical of an 8Fe ferredoxin. The magnetic properties at liquid-He temperature of this novel cluster, studied by low-temperature magnetic-c.d. and e.p.r. spectroscopy, are diamagnetic in the oxidized state and S = 3/2 in the one-electron-reduced state. This cluster provides a plausible model for the ligation states of the [4Fe-4S]1+ core in the S = 3/2 cluster of the iron protein of nitrogenase and in Bacillus subtilis glutamine:phosphoribosyl pyrophosphate amidotransferase.  相似文献   

12.
IscU/Isu and IscA/Isa (and related NifU and SufA proteins) have been proposed to serve as molecular scaffolds for preassembly of [FeS] clusters to be used in the biogenesis of iron-sulfur proteins. In vitro studies demonstrating transfer of preformed scaffold-[FeS] complexes to apoprotein acceptors have provided experimental support for this hypothesis, but investigations to date have yielded only single-cluster transfer events. We describe an in vitro assay system that allows for real-time monitoring of [FeS] cluster formation using circular dichroism spectroscopy and use this to investigate de novo [FeS] cluster formation and transfer from Escherichia coli IscU and IscA to apo-ferredoxin. Both IscU and IscA were found to be capable of multiple cycles of [2Fe2S] cluster formation and transfer suggesting that these scaffold proteins are capable of acting "catalytically." Kinetic studies further showed that cluster transfer exhibits Michaelis-Menten behavior indicative of complex formation of holo-IscU and holo-IscA with apoferredoxin and consistent with a direct [FeS] cluster transfer mechanism. Analysis of the dependence of the rate of cluster transfer, however, revealed enhanced efficiency at low ratios of scaffold to acceptor protein suggesting participation of a transient, labile scaffold-[FeS] species in the transfer process.  相似文献   

13.
All naturally occurring ferredoxins that have Cys-X-X-Asp-X-X-Cys motifs contain [4Fe-4S](2+/+) clusters that can be easily and reversibly converted to [3Fe-4S](+/0) clusters. In contrast, ferredoxins with unmodified Cys-X-X-Cys-X-X-Cys motifs assemble [4Fe-4S](2+/+) clusters that cannot be easily interconverted with [3Fe-4S](+/0) clusters. In this study we changed the central cysteine of the Cys(39)-X-X-Cys(42)-X-X-Cys(45) of Azotobacter vinelandii FdI, which coordinates its [4Fe-4S](2+/+) cluster, into an aspartate. UV-visible, EPR, and CD spectroscopies, metal analysis, and x-ray crystallography show that, like native FdI, aerobically purified C42D FdI is a seven-iron protein retaining its [4Fe-4S](2+/+) cluster with monodentate aspartate ligation to one iron. Unlike known clusters of this type the reduced [4Fe-4S](+) cluster of C42D FdI exhibits only an S = 1/2 EPR with no higher spin signals detected. The cluster shows only a minor change in reduction potential relative to the native protein. All attempts to convert the cluster to a 3Fe cluster using conventional methods of oxygen or ferricyanide oxidation or thiol exchange were not successful. The cluster conversion was ultimately accomplished using a new electrochemical method. Hydrophobic and electrostatic interaction and the lack of Gly residues adjacent to the Asp ligand explain the remarkable stability of this cluster.  相似文献   

14.
Resonance Raman spectroscopy has been used to investigate the Fe-S stretching modes of the [4Fe-4S]2+ cluster in the oxidized iron protein of Clostridium pasteurianum nitrogenase. The results are consistent with a cubane [4Fe-4S] cluster having effective Td symmetry with cysteinyl coordination for each iron. In accord with previous optical and EPR studies [(1984) Biochemistry 23, 2118-2122], treatment with the iron chelator alpha, alpha'-dipyridyl in the presence of MgATP is shown to effect cluster conversion to a [2Fe-2S]2+ cluster. Resonance Raman data also indicate that partial conversion to a [2Fe-2S]2+ cluster is induced by thionine-oxidation in the presence of MgATP in the absence of an iron chelator. This result suggests new explanations for the dramatic change in the CD spectrum that accompanies MgATP-binding to the oxidized Fe protein and the anomalous resonance Raman spectra of thionine-oxidized Clostridium pasteurianum bidirectional hydrogenase.  相似文献   

15.
An IscA homologue within the nif regulon of Azotobacter vinelandii, designated (Nif)IscA, was expressed in Escherichia coli and purified to homogeneity. Purified (Nif)IscA was found to be a homodimer of 11-kDa subunits that contained no metal centers or other prosthetic groups in its as-isolated form. Possible roles for (Nif)IscA in Fe-S cluster biosynthesis were assessed by investigating the ability to bind iron and to assemble Fe-S clusters in a NifS-directed process, as monitored by the combination of UV-vis absorption, M?ssbauer, resonance Raman, variable-temperature magnetic circular dichroism, and EPR spectroscopies. Although (Nif)IscA was found to bind ferrous ion in a tetrahedral, predominantly cysteinyl-ligated coordination environment, the low-binding affinity argues against a specific role as a metallochaperone for the delivery of ferrous ion to other Fe-S cluster assembly proteins. Rather, a role for (Nif)IscA as an alternate scaffold protein for Fe-S cluster biosynthesis is proposed, based on the NifS-directed assembly of approximately one labile [4Fe-4S](2+) cluster per (Nif)IscA homodimer, via a transient [2Fe-2S](2+) cluster intermediate. The cluster assembly process was monitored temporally using UV-vis absorption and M?ssbauer spectroscopy, and the intermediate [2Fe-2S](2+)-containing species was additionally characterized by resonance Raman spectroscopy. The M?ssbauer and resonance Raman properties of the [2Fe-2S](2+) center are consistent with complete cysteinyl ligation. The presence of three conserved cysteine residues in all IscA proteins and the observed cluster stoichiometry of approximately one [2Fe-2S](2+) or one [4Fe-4S](2+) per homodimer suggest that both cluster types are subunit bridging. In addition, (Nif)IscA was shown to couple delivery of iron and sulfur by using ferrous ion to reduce sulfane sulfur. The ability of Fe-S scaffold proteins to couple the delivery of these two toxic and reactive Fe-S cluster precursors is likely to be important for minimizing the cellular concentrations of free ferrous and sulfide ions. On the basis of the spectroscopic and analytical results, mechanistic schemes for NifS-directed cluster assembly on (Nif)IscA are proposed. It is proposed that the IscA family of proteins provide alternative scaffolds to the NifU and IscU proteins for mediating nif-specific and general Fe-S cluster assembly.  相似文献   

16.
17.
Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations.  相似文献   

18.
Bonomi F  Iametti S  Morleo A  Ta D  Vickery LE 《Biochemistry》2011,50(44):9641-9650
The scaffold protein IscU and molecular chaperones HscA and HscB play central roles in biological assembly of iron-sulfur clusters and maturation of iron-sulfur proteins. However, the structure of IscU-FeS complexes and the molecular mechanism whereby the chaperones facilitate cluster transfer to acceptor proteins are not well understood. We have prepared amino acid substitution mutants of Escherichia coli IscU in which potential ligands to the FeS cluster (Cys-37, Cys-63, His-105, and Cys-106) were individually replaced with alanine. The properties of the IscU-FeS complexes formed were investigated by measuring both their ability to transfer preformed FeS clusters to apo-ferredoxin and the activity of the IscU proteins in catalyzing cluster assembly on apo-ferredoxin using inorganic iron with inorganic sulfide or with IscS and cysteine as a sulfur source. The ability of the HscA/HscB chaperone system to accelerate ATP-dependent cluster transfer from each IscU substitution mutant to apo-ferredoxin was also determined. All of the mutants formed FeS complexes with a stoichiometry similar to the wild-type holo-protein, i.e., IscU(2)[2Fe2S], raising the possibility that different cluster ligation states may occur during iron-sulfur protein maturation. Spectroscopic properties of the mutants and the kinetics of transfer of performed IscU-FeS clusters to apo-ferredoxin indicate that the most stable form of holo-IscU involves iron coordination by Cys-63 and Cys-106. Results of studies on the ability of mutants to catalyze formation of holo-ferredoxin using iron and different sulfur sources were consistent with proposed roles for Cys-63 and Cys-106 in FeS cluster binding and also indicated an essential role for Cys-106 in sulfide transfer to IscU from IscS. Measurements of the ability of the chaperones HscA and HscB to facilitate cluster transfer from holo-IscU to apo-ferredoxin showed that only IscU(H105A) behaved similarly to wild-type IscU in exhibiting ATP-dependent stimulation of cluster transfer. IscU(C63A) and IscU(C106A) displayed elevated rates of cluster transfer in the ±ATP whereas IscU(C37A) exhibited low rates of cluster transfer ±ATP. In interpreting these findings, we propose that IscU(2)[2Fe2S] is able undergo structural isomerization to yield conformers having different cysteine residues bound to the cluster. On the basis of the crystal structure of HscA complexed with an IscU-derived peptide, we propose that the chaperone binds and stabilizes an isomer of IscU(2)[2Fe2S] in which the cluster is bound by cysteine residues 37 and 63 and that the [2Fe2S] cluster, being held less tightly than that coordinated by Cys-63 and Cys-106 in free IscU(2)[2Fe2S], is more readily transferred to acceptor proteins such as apo-ferredoxin.  相似文献   

19.
Most eukaryotes contain iron-sulfur cluster (ISC) assembly proteins related to Saccharomyces cerevisiae Isa1 and Isa2. We show here that Isa1 but not Isa2 can be functionally replaced by the bacterial relatives IscA, SufA, and ErpA. The specific function of these "A-type" ISC proteins within the framework of mitochondrial and bacterial Fe/S protein biogenesis is still unresolved. In a comprehensive in vivo analysis, we show that S. cerevisiae Isa1 and Isa2 form a complex that is required for maturation of mitochondrial [4Fe-4S] proteins, including aconitase and homoaconitase. In contrast, Isa1-Isa2 were dispensable for the generation of mitochondrial [2Fe-2S] proteins and cytosolic [4Fe-4S] proteins. Targeting of bacterial [2Fe-2S] and [4Fe-4S] ferredoxins to yeast mitochondria further supported this specificity. Isa1 and Isa2 proteins are shown to bind iron in vivo, yet the Isa1-Isa2-bound iron was not needed as a donor for de novo assembly of the [2Fe-2S] cluster on the general Fe/S scaffold proteins Isu1-Isu2. Upon depletion of the ISC assembly factor Iba57, which specifically interacts with Isa1 and Isa2, or in the absence of the major mitochondrial [4Fe-4S] protein aconitase, iron accumulated on the Isa proteins. These results suggest that the iron bound to the Isa proteins is required for the de novo synthesis of [4Fe-4S] clusters in mitochondria and for their insertion into apoproteins in a reaction mediated by Iba57. Taken together, these findings define Isa1, Isa2, and Iba57 as a specialized, late-acting ISC assembly subsystem that is specifically dedicated to the maturation of mitochondrial [4Fe-4S] proteins.  相似文献   

20.
Dihydroxy acid dehydratase from spinach contains a [2Fe-2S] cluster   总被引:3,自引:0,他引:3  
Dihydroxy acid dehydratase, the third enzyme in the branched-chain amino acid biosynthetic pathway, has been purified to homogeneity (5000-fold) from spinach leaves. The molecular weights of dihydroxy acid dehydratase as determined by sodium dodecyl sulfate and native gel electrophoresis are 63,000 and 110,000, respectively, suggesting the native enzyme is a dimer. 2 moles of iron were found per mol of protein monomer. Chemical analyses of iron and labile sulfide gave an Fe/S2- ratio of 0.95. The EPR spectrum of dithionite-reduced enzyme (gavg = 1.91) is similar to spectra characteristic of Rieske Fe-S proteins and has a spin concentration of 1 spin/1.9 irons. These results strongly suggest that dihydroxy acid dehydratase contains a [2Fe-2S] cluster, a novel finding for enzymes of the hydrolyase class. In contrast to the Rieske Fe-S proteins, the redox potential of the Fe-S cluster is quite low (-470 mV). Upon addition of substrate, the EPR signal of the reduced enzyme changes to one typical of 2Fe ferredoxins (gavg = 1.95), and the visible absorption spectrum of the native enzyme shows substantial changes between 400 and 600 nm. Reduction of the Fe-S cluster decreases the enzyme activity by 6-fold under Vmax conditions. These results suggest the direct involvement of the [2Fe-2S] cluster of dihydroxy acid dehydratase in catalysis. Similar conclusions have been reached for the catalytic involvement of the [4Fe-4S] cluster of the hydrolyase aconitase (Emptage, M. H., Kent, T. A., Kennedy, M. C., Beinert, H., and Münck, E. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 4674-4678).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号