首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Preincubation of turkey erythrocytes with beta-adrenergic agonists leads to an attenuation of the responsiveness of adenylate cyclase to subsequent hormonal stimulation. Recently, our laboratory has shown (Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. D., Caron, M. G., and Lefkowitz, R. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 3173-3177) using 32Pi incorporation that phosphorylation of the beta-adrenergic receptor accompanies this desensitization process. We now report that, as determined from intracellular [gamma-32P] ATP specific activity measurements, this phosphorylation reaction occurs in a stoichiometric fashion. Under basal conditions there exists 0.75 +/- 0.1 mol of phosphate per mol of receptor whereas under maximally desensitized conditions this ratio increases to 2.34 +/- 0.13 mol/mol. This phosphorylation of the receptor is dose-dependent with respect to isoproterenol and exhibits a dose-response curve coincidental with that for isoproterenol-induced desensitization of adenylate cyclase. The time courses for receptor phosphorylation and adenylate cyclase desensitization are identical. In addition, the rate of resensitization of adenylate cyclase activity is comparable to the rate of return of the phosphate/receptor stoichiometries to control levels. Both the phosphorylation and desensitization reactions are pharmacologically specific as indicated by the high degree of stereoselectivity, rank order of catecholamines, and blockade by the specific beta-adrenergic antagonist, propranolol. Incubation of turkey erythrocytes with cAMP and cAMP analogs maximally activates cAMP-dependent protein kinase but only partially mimics isoproterenol in promoting phosphorylation of the receptor in concordance with their partial effects in inducing desensitization. Conversely, activators or inhibitors of Ca2+/calmodulin kinase or protein kinase C do not affect the isoproterenol-induced desensitization. These results indicate that desensitization of turkey erythrocyte adenylate cyclase is highly correlated with phosphorylation of the beta-adrenergic receptor and that these events are mediated, at least partially, by cAMP.  相似文献   

2.
J M Stadel  R Rebar  S T Crooke 《Biochemistry》1987,26(18):5861-5866
Preincubation of turkey erythrocytes with isoproterenol is associated with (1) 50-60% attenuation of agonist-stimulated adenylate cyclase activity, (2) altered mobility of the beta-adrenergic receptor on sodium dodecyl sulfate-polyacrylamide gels, and (3) increased phosphorylation of the beta-adrenergic receptor. Using a low-cross-linked polyacrylamide gel, the beta-adrenergic receptor protein from isoproterenol-desensitized cells, labeled with 32P or with the photoaffinity label 125I-(p-azidobenzyl)carazolol, can be resolved into a doublet (Mr congruent to 37,000 and Mr congruent to 41,000) as compared to a single Mr congruent to 37,000 beta-adrenergic receptor protein from control erythrocytes. The appearance of the doublet was dependent on the concentration of agonist used to desensitize the cells. Incubation of erythrocytes with dibutyryl-cAMP did not promote formation of the doublet but decreased agonist-stimulated adenylate cyclase activity 40-50%. Limited-digestion peptide maps of 32P-labeled beta-adrenergic receptors using papain revealed a unique phosphopeptide in the larger molecular weight band (Mr congruent to 41,000) of the doublet from the agonist-desensitized preparation that was absent in the peptide maps of the smaller band (Mr congruent to 37,000), as well as control or dibutyryl-cAMP-desensitized receptor. These data provide evidence that maximal agonist-induced desensitization of adenylate cyclase coupled beta-adrenergic receptors in turkey erythrocytes occurs by a two-step mechanism.  相似文献   

3.
4.
Prostaglandin D2 (PGD2) is one of several prostaglandins that can inhibit platelet aggregation and activate adenylate cyclase. Platelets were exposed to varying concentrations of PGD2 washed, and the adenylate cyclase response to prostaglandins, epinephrine, and sodium fluoride determined. Incubating platelets with 5 x 10(-5) M PGD2 for 2 hr resulted in a 45% decrease in PGD2 activation of adenylate cyclase and a 25% decrease in stimulation by PGE1. Fluoride activation (7-fold) epinephrine inhibition (30%) and basal enzyme activity were unchanged by exposure of the platelets to PGD2. Desensitization was concentration dependent, with loss of enzyme activity first noted when platelets were incubated with 10(-7) M PGD2. Enzyme sensitivity could be partially restored when desensitized platelets were washed free of PGD2 and incubated in buffer for 2 hr; complete resensitization required incubation for 24 hr in plasma. Regulation of prostaglandin sensitive platelet adenylate cyclase could be of importance in mediating the response of platelets to aggregating agents.  相似文献   

5.
G Rimon  E Hanski  A Levitzki 《Biochemistry》1980,19(19):4451-4460
The individual temperature dependencies of the process which control the activity of turkey erythrocyte adenylate cyclase have been determined. The temperature dependence of the fraction of activable cyclase units experiences a thermal transition at 24 degrees C for all three modes of enzyme activation: l-epinephrine, adenosine, and NaF. This thermal transition probably reflects the phase transition in the inner monolayer of the membrane which influences the behavior of the GTP regulatory unit which is involved in all three modes of enzyme activation. The "rate constant" of enzyme activation by adenosine reflects two thermal transitions, at 24 and at 35 degrees C; the apparent rate constant of cyclase activation by NaF activation experiences a transition only at 24 degrees C whereas the rate constant of the beta-receptor-bound agonist decreases monotonously with no "breaks" on the Arrhenium plot. Following the temperature dependence of the fluorescence intensity of dansylphosphatidylethanolamine embedded in both sides of the membrane and exclusively in the outer monolayer, one can assign the thermal transition of 24 degrees C to the inner monolayer and the other two transitions to the outer monolayer (10 and 35 degrees C). We interpret these results as follows. (a) The monomolecular rate constant characterizing the activation of cyclase by the precoupled adenosine receptor experiences both the transition at 24 and 35 degrees C, indicating that the latter may span the bilayer. (b) The bata receptor activates the cyclase units only in fluid areas since it can diffuse exclusively in the fluid areas of the membrane and is unable to interact with cyclase units in "frozen" areas. the linear dependence of the logarithm of the rate constant on 1/T for the bata receptor reflects the change of membrane fluidity as a function of temperature.  相似文献   

6.
Conditions have been developed for desensitizing the beta-adrenergic receptor-coupled adenylate cyclase of turkey erythrocytes in a cell-free system. Desensitization is observed when cell lysates are incubated with isoproterenol or cAMP analogs for 30 min at 37 degrees C. Maximally effective concentrations of isoproterenol produce a 41.0 +/- 1.55% loss of iosproterenol-stimulated and a 15.0 +/- 2.35% loss of fluoride-stimulated enzyme activity. cAMP causes a 26.5 +/- 1.5% fall in isoproterenol-stimulated and a 21.5 +/- 4.4% fall in fluoride-sensitive activity. Desensitization by isoproterenol is dose-dependent, stereospecific, and blocked by the beta-adrenergic antagonist propranolol. Cell-free desensitization required ATP, Mg2+, and factor(s) present in the soluble fraction of the cell. Nonphosphorylating analogs of ATP did not support desensitization. Desensitization by agonist or cAMP in the cell-free system caused structural alterations in the beta-adrenergic receptor peptides apparent as an altered mobility of the photoaffinity labeled receptor peptides on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. As with the desensitization reaction, supernatant factors and ATP were also required for the agonist or cAMP-promoted receptor alterations. These data indicate that beta-adrenergic agonists promote a cAMP-mediated process which leads to receptor alterations and desensitization. The reactions involved in this process require ATP and soluble cellular factors. Additional processes must also occur to account for decreases in fluoride-sensitive enzyme activity. The availability of this cell-free system should facilitate elucidation of the molecular mechanisms involved in these processes.  相似文献   

7.
Human A431 and rat glioma C6 cells exposed to isoproterenol underwent a time- and dose-dependent loss of isoproterenol-stimulated adenylate cyclase activity. Desensitization was accompanied by sequestration of beta-adrenergic receptors, which became less accessible to the hydrophilic antagonist 3H-labeled 4-(3-tert-butylamino-2-hydroxypropoxy)benzimidazole-2-one hydrochloride ([3H]CGP-12177) and redistributed from the heavier density plasma membrane fraction to a lighter density membrane fraction. Prior treatment of the cells with concanavalin A or phenylarsine oxide blocked sequestration of the receptors but not desensitization of the agonist-stimulated adenylate cyclase. The membranes from such pretreated cells were exposed to alkali to inactivate adenylate cyclase, and the receptors were transferred to a foreign adenylate cyclase by membrane fusion with polyethylene glycol. beta receptors from desensitized cells exhibited a reduced ability to maximally stimulate the foreign adenylate cyclase, but remained accessible to [3H]CGP-12177 in the fused membranes. When isoproterenol-treated cells were washed free of agonist, there was a time-dependent recovery of agonist responsiveness and [3H]CGP-12177-binding sites. Using the fusion technique, the receptors recovered their functional activity in the resensitized cells. In concanavalin A-treated cells, desensitization and resensitization appeared to occur in the absence of receptor sequestration. Finally, membranes from desensitized cells pretreated with concanavalin A were fused with polyethylene glycol and assayed for agonist-stimulated adenylate cyclase. There was no reversal of the desensitized state. Thus, the primary, essential step in the desensitization process is a reduction in functional activity of the beta-adrenergic receptor. In contrast, sequestration of the receptors is not a prerequisite, but a secondary event during desensitization.  相似文献   

8.
Prostaglandin D2 (PGD2) is one of several prostaglandins that can inhibit platelet aggregation and activate adenylate cyclase. Platelets were exposed to varying concentrations of PGD2, washed, and the adenylate cyclase response to prostaglandins, epinephrine, and sodium fluoride determined. Incubating platelets with 5 × 10?5 M PGD2 for 2 hr resulted in a 45% decrease in PGD2 activation of adenylate cyclase and a 25% decrease in stimulation by PGE1. Fluoride activation (7-fold) epinephrine inhibition (30%) and basal enzyme activity were unchanged by exposure of the platelets to PGD2. Desensitization was concentration dependent, with loss of enzyme activity first noted when platelets were incubated with 10?7 M PGD2. Enzyme sensitivity could be partially restored when desensitized platelets were washed free of PGD2 and incubated in buffer for 2 hr; complete resensitization required incubation for 24 hr in plasma. Regulation of prostaglandin sensitive platelet adenylate cyclase could be of importance in mediating the response of platelets to aggregating agents.  相似文献   

9.
Beta-adrenergic receptors and catecholamine-sensitive adenylate cyclase activity were studied in erythrocytes obtained from rats 6 weeks, 6 months, and 15 months of age. Intact erythrocytes from 6 week old rats contained significantly more beta receptors (411 ± 31 sites/cell) than 6 month (328 ± 21) or 15 month old rats (335 ± 16), as determined by binding of [125I] iodohydroxybenzylpindolol. Erythrocytes from 6 week old rats also contained significantly greater isoproterenol-sensitive adenylate cyclase activity (95.0 ± 9.4pmoles/109 cells) than erythrocytes from 6 month (27.9 ± 3.3) or 15 month old rats (23.7 ± 3.6). The erythrocyte population of 6 week old rats was bigger (mean corpuscular volume = 62 ± 2μ3/cell) than the older rat erythrocytes (47 ± 1μ3 and 48 ± 1μ3). When the data were expressed relative to a unit of cell volume, there was no difference in the density of beta receptors among all three populations but a progressive and significant fall in hormone-sensitive adenylate cyclase activity. In the rat erythrocyte, the age-related loss of adenylate cyclase activity is not accompanied by changes in β-receptor density.  相似文献   

10.
Preincubation of duck erythrocytes with tumor promoting phorbol diesters or catecholamines leads to attenuation of adenylate cyclase activity. 12-0-Tetradecanoyl phorbol-13-acetate (TPA) and phorbol 12,13-dibutyrate treatment induced a 38% and 30% desensitization of isoproterenol-stimulated adenylate cyclase activity, respectively. In contrast, the inactive phorbol diester, 4 alpha-phorbol 12,13-didecanoate, was without effect in promoting adenylate cyclase desensitization. The catecholamine isoproterenol induced a 51% desensitization. Incubation of 32Pi labeled erythrocytes with TPA promoted a 3- to 4-fold increase in phosphorylation of the beta-adrenergic receptor as did incubation with isoproterenol. Treatment of the cells with both TPA and isoproterenol together resulted in desensitization and receptor phosphorylation which were no greater than those observed with either agent alone. These data suggest a potential role for protein kinase C in regulating beta-adrenergic receptor function.  相似文献   

11.
Preincubation of turkey erythrocytes with isoproterenol results in an impaired ability of beta-adrenergic agonists to stimulate adenylate cyclase in membranes prepared from these cells. The biochemical basis for this agonist-induced desensitization was investigated using the new beta-adrenergic antagonist photoaffinity label [125I]p-azidobenzylcarazolol ([125I]PABC). Exposure of [125I]PABC-labeled turkey erythrocyte membranes to high intensity light leads to specific covalent incorporation of the labeled compound into two polypeptides, Mr approximately equal to 38,000 and 50,000, as determined by sodium dodecyl sulfate-polyacrylamide electrophoresis. Incorporation of [125I]PABC into these two polypeptides is completely blocked by a beta-adrenergic agonist and antagonist consistent with covalent labeling of the beta-adrenergic receptor. After desensitization of the turkey erythrocyte by preincubation with 10(-5) M isoproterenol, the beta-adrenergic receptor polypeptides specifically labeled by [125I]PABC in membranes prepared from desensitized erythrocytes were of larger apparent molecular weight (Mr approximately equal to 42,000 versus 38,000, and 53,000 versus 50,000) compared to controls. When included during the preincubation of the erythrocytes with isoproterenol, the antagonist propranolol (10(-5) M) inhibited both agonist-promoted desensitization of the adenylate cyclase and the altered mobility of the [125I]PABC-labeled receptor polypeptides. These data indicate that structural alterations in the beta-adrenergic receptor accompany the desensitization process in turkey erythrocytes.  相似文献   

12.
13.
14.
The beta 1-adrenergic receptors of turkey erythrocyte membranes have been identified by binding of the radioactively labeled antagonist (--)-[3H]dihydroalprenolol, solubilized by treatment of the membranes with the detergent digitonin, and purified by affinity chromatography. Binding of (--)-[3H]dihydroalprenolol to the membranes occurred to a single class of non-cooperative binding sites (0.2--0.3 pmol/mg protein) with a equilibrium dissociation constant (Kd) of 8 (+/- 2) nM. These sites were identified as the functional, adenylate-cyclase-linked beta 1-adrenergic receptors on the basis of: firstly, the fast association and dissociation binding kinetics at 30 degrees C; secondly, the stereospecific displacement of bound (--)-[3H]dihydroalprenolol by beta-adrenergic agonists and antagonists; and thirdly, the order of potencies for agonists to displace bound tracer (isoproterenol congruent to protokylol greater than norepinephrine congruent to epinephrine) similar to the one found for adenylate cyclase activation, and typical for beta 1-adrenergic receptors. Treatment of the membranes with the detergent digitonin solubilized 30% of the receptors in an active form. Digitonin solubilized also adenylate cyclase activity with a yield of 20 to 30%, provided the membranes were first treated with an effector known to produce a persistent active state of the enzyme: e.g. sodium fluoride. Binding sites for guanine nucleotides ([3H]p[NH]ppG) were solubilized as well. Their concentration (24 pmol/mg protein) was in large excess over the concentration of solubilized receptors (0.30--0.45 pmol/mg protein). Solubilized receptors were purified 500--2000-fold by affinity chromatography with a 25 to 35% yield, using an alprenolol-agarose affinity matrix. Affinity purified receptors were devoid of measurable adenylate cyclase activity and guanine nucleotide binding sites, thus showing that receptors and adenylate cyclase are distinct membrane constituents, and that guanine nucleotides apparently do not bind directly to the receptor molecules. Membrane-bound, solubilized and purified receptors were sensitive to inactivation by dithiothreitol, but not by N-ethylmaleimide, suggesting that receptors are at least partly constituted of protein molecules, with essential disulfide bonds.  相似文献   

15.
It has recently been suggested that adenylate cyclase activity is controlled by a regulatory cycle consisting of two reactions: a hormone induced formation of the active adenylate cyclase-GTP complex, and a subsequent turn-off reaction in which hydrolysis of the bound nucleotide reverts the system to the inactive state. To test this model each of the two reactions was measured separately and their rate constants were used to estimate the steady state adenylate cyclase and GTPase activities. The first order rate constants were kon = 3 min-1 for the activation reaction and koff = 15 min-1 for the turn-off reaction. Substitution of these rate constants in the steady state equation of the regulatory cycle gave values of hormone stimulated adenylate cyclase and GTPase activities similar to those determined by direct measurements. Treatment of the adenylate cyclase with cholera toxin caused a decrease of 96% in the rate constant of the turn-off reaction. In this case too the activities calculated from the steady state equation were in good agreement with those determined directly.  相似文献   

16.
Isoproterenol stimulates cellular accumulation of cyclic adenosine 3':5'-monophosphate (cyclic AMP) and produces a 2- to 4-fold increase in bidirectional potassium fluxes in turkey erythrocytes. Ouabain, which does not alter catecholamine-stimulated cellular cyclic AMP, inhibits potassium influx by 50 to 70%, does not alter potassium outflux or isoproterenol-stimulated potassium influx, but increases isoproterenol-stimulated potassium outflux. Stimulation of potassium transport by isoproterenol can be reproduced by adding cyclic AMP to the medium and is inhibited by propranolol or dichloroisoproterenol but not by phentolamine. Theophylline at concentrations which inhibit cyclic nucleotide phosphodiesterase in isolated turkey erythrocyte plasma membranes by greater than 90%, does not augment isoproterenol stimulation of cellular cyclic AMP or of potassium transport but does potentiate stimulation of potassium influx produced by adding cyclic AMP to the medium. Isoproterenol-stimulated cellular cyclic AMP increases steadily for at least 2 hours. Potassium transport, however, increases rapidly, becomes maximal after 20 to 30 min of incubation, and thereafter decreases progressively so that after 2 hours of incubation potassium fluxes are only slightly greater than for the control. Ouabain prolongs the duration of catecholamine-stimulated potassium influx and potassium outflux, reflecting its ability to relieve the refractoriness developed by turkey erythroyctes to endogenous cyclic AMP.  相似文献   

17.
18.
S Braun  A Levitzki 《Biochemistry》1979,18(10):2134-2138
The mode of coupling of the adenosine receptor to adenylate cyclase in turkey erythrocyte membranes was probed by two independent approaches. The progressive inactivation of the adenosine receptor by an adenosine receptor affinity label resulted in the proportional reduction in the adenosine plus GppNHp dependent specific activity. In contrast, the intrinsic rate constant (k3), characterizing the process of adenylate cyclase activation by the adenosine-adenosine receptor complex, is independent of the extent of receptor inactivation. This behavior favors the precoupled mechanism, A + R.E: formula: (see text), where the receptor R and the enzyme E are permanently coupled to each other and the adenosine A binds to the receptor and induces the first-order process of cyclase activation to its active form ARE'. The finding that adenosine receptor is permanently coupled to the cyclase catalytic unit is corroborated by the observation that the progressive increase in membrane fluidity has no effect on the rate constant (k3) of adenylate cyclase activation by the adenosine-adenosine receptor complex and that the dose-response curve for adenosine is noncooperative.  相似文献   

19.
Beta 1-Adrenergic receptor proteins were extracted from turkey erythrocyte membranes with lauroyl sucrose and digitonin and purified by affinity chromatography on a column of alprenolol agarose Affi-gel 10 or 15. The 5000-fold purified receptor is able to couple functionally with the stimulatory GTP-binding protein (GS) from either turkey or duck erythrocytes. Functional coupling was achieved by three different approaches. (i) Purified beta-receptor polypeptides were coupled in phospholipid (asolectin) vesicles with GS from a crude cholate or lauroyl sucrose extract of turkey erythrocyte membranes. The detergent was removed and vesicles were formed with SM-2 beads. (ii) Purified beta-receptor was reconstituted with pure, homogeneous GS in asolectin vesicles. (iii) Purified beta-receptors were either coupled in asolectin vesicles with a mixture of pure, homogeneous Gpp(NH)p-activated GS and a lauroyl sucrose extract of turkey erythrocyte membranes, or with pure, homogeneous Gpp(NH)p-activated GS alone. The decay of activity was measured on addition of GTP and hormone. In (ii) and (iii), the detergent was removed and vesicles were formed by gel filtration on Sephadex G-50 columns. In each of the three different experimental conditions, the beta-receptor was activated with l-isoproterenol and activation was blocked with d,l-propranolol. Activated GS were measured separately by means of their capacity to activate a crude Lubrol PX-solubilized adenylate cyclase preparation from rabbit myocardial membrane. The kinetics of GS activation by purified beta-receptors occupied by l-isoproterenol was first order and activation was linearly dependent on receptor concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Binding of (?)-[3H]dihydroalprenolol to the synaptic membrane fractions of canine cerebellum was rapid and reversible with rate constants of 1.62 × 108m?1 min?1 and 0.189 min?1 for the forward and reverse reactions, respectively. The binding was of high affinity and saturable with an equilibrium dissociation constant (KD) of 5 to 7 nm. Bound (?)-[3H]-dihydroalprenolol was displaceable with β-adrenergic agonists and antagonists, but not with a variety of other neuroactive substances such as acetylcholine, histamine, serotonin, dopamine, tyramine, (?)-phenylephrine, γ-aminobutyric acid, glycine, and glutamic acid. Adenylate cyclase of the membranes was stimulated at most three times by β-adrenergic agonists, but not significantly by the other neuroactive substances. Guanine nucleotides such as GTP and guanyl-5′-yl imidodiphosphate (Gpp(NH)p) were strictly required for β-adrenergic stimulation of adenylate cyclase with their optimum concentrations of 50 μm, although the nucleotides alone elevated virtually no basal activity. The affinities of β-adrenergic ligands including some stereoisomers for (?)-[3H]dihydroalprenolol binding sites were very similar to those for adenylate cyclase in the presence of GTP. Binding of β-adrenergic agonists to the membranes exhibited an apparent negative cooperativity as determined by displacement of (?)-[3H]dihydroalprenolol in the absence of purine nucleotides. This negative cooperativity was entirely abolished by addition of either GTP or Gpp(NH)p at 50 μm. Both (?)-isoproterenol-stimulated adenylate cyclase activity and binding of (?)-[3H]dihydroalprenolol were not affected by β1-selective antagonists, (±)-atenolol, and (±)-practolol, at concentrations which completely inhibit peripheral β1-responses in vitro, whereas β2-selective agonists such as YM-08316 (BD-40A) and (±)-salbutamol not only stimulated adenylate cyclase but also competitively inhibited binding of (?)-[3H]dihydroalprenolol. These results indicate that canine cerebellar adenylate cyclase may be coupled specifically with β2-adrenergic receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号