首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tetrahydropapaveroline (THP), a metabolite of dopamine, has been suspected to be associated with dopaminergic neurotoxicity of L-DOPA. THP induced apoptosis in human leukemia cell line HL-60 cells, but did not in its hydrogen peroxide (H2O2)-resistant clone HP100. THP-induced DNA ladder formation in HL-60 cells was inhibited by a metal chelator. THP induced damage to 32P-labeled DNA fragments in the presence of metals. In the presence of Fe(III)EDTA, THP caused DNA damage at every nucleotide. The DNA damage was inhibited by free hydroxy radical (·OH) scavengers and catalase, suggesting that the Fe(III)EDTA-mediated DNA damage is mainly due to ·OH generation. In the presence of Cu(II), THP caused DNA damage mainly at T and G of 5′-TG-3′ sequence. The inhibitive effect of catalase and bathocuproine on Cu(II)-mediated DNA damage suggested that H2O2 and Cu(I) participate in the DNA damage. This study demonstrated that THP-induced apoptosis via reactive oxygen species generated from reaction of H2O2 and metals plays an important role in cytotoxicity of L-DOPA.  相似文献   

2.
In the course of an investigation into the effect of Tamm-Horsfall protein (THP) on ion transport, we performed stable transfection of THP into MDCK cells using the SV40 or the cytomegalovirus (CMV) promoter. As controls, we transfected MDCK cells with an ``empty' plasmid containing SV40 or CMV promoter but without THP cDNA. In another set of controls, we subjected cells to transfection procedures without DNA (mock transfection). K influx was not altered in cells subjected to mock transfection procedures without DNA, but both ouabain sensitive (OS) and ouabain resistant (OR) components of K influx were diminished in cells transfected with THP cDNA using either SV40 or CMV promoter. However, K influx was also reduced in cells transfected with a control plasmid containing either the SV40 promoter alone, or the CMV promoter alone, without the THP cDNA. Thus, the transport alterations were caused by transfection and not by THP. The reduction in ouabain-sensitive K influx was accompanied by a proportional reduction in the abundance of Na-K pump units as assessed by [3H] ouabain binding. [3H] bumetanide binding, a measure of the number of functioning NaK2Cl cotransporter sites, was reduced pari passu with the reduction in bumetanide-sensitive K influx. These results highlight the possibility that alterations in properties of transfected cells may not be solely due to the presence of transfected protein, but the result of some process associated with transfection itself. Without appropriate controls to evaluate this possibility, results of transfection studies are subject to potentially faulty and misleading interpretation. Received: 25 April 1995/Revised: 25 September 1995  相似文献   

3.
Tetrahydropalmatine (THP) is one of the active alkaloid ingredients of Rhizoma Corydalis. THP has a chiral center, and the stereoselective pharmacokinetics and tissue distribution have been reported. The aim of the present article is to study the stereoselective protein binding of THP using equilibrium dialysis followed by HPLC‐UV analysis. The results showed that THP stereoselectively binds to human serum albumin (HSA), α1‐acid glycoprotein (AGP), and proteins in human plasma. The fraction binding of (+)‐THP was significantly higher than that of (?)‐THP, whereas such stereoselectivity was not found in rat plasma. The affinity of HSA and AGP to (+)‐THP, expressed as nKA, were 9.0 × 103 M?1 and 2.34 × 105 M?1, respectively, which were notablely higher than to (?)‐THP, with the nKA of 3.4 × 103 M?1 and 1.44 × 105 M?1, respectively. The binding site of HSA for (?)‐THP was Site I, whereas for (+)‐THP was both Site I and Site II. The F1/S variants of AGP were proved to be the key variants (?)‐ and (+)‐THP binding to both. Finally, the AGP binding drugs, such as mifepristone, were demonstrated to reduce the fraction binding of (?)‐ and (+)‐THP with pure AGP (1 mg/ml) but did not affect the fraction binding of both (?)‐ and (+)‐THP with proteins in human plasma. It can be concluded that protein binding of THP is species dependent and stereoselective, both HSA and AGP contribute to the stereoselective binding to THP enatiomers, and AGP binding drugs may not cause the drug–drug interaction on THP in healthy human plasma. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
A racemate from natural product, tetrahydropalmatine (THP), was characterized on its enantioselective binding to DNA by the chromatographic methods including microdialysis/HPLC, centrifugal ultrifiltration/HPLC and immobilized DNA affinity chromatography. It was found that its (+)-enantiomer was preferential to binding on B-form duplex DNA including calf thymus DNA, AT and GC sequence oligo DNA, as well as triplex oligo DNA. The binding constants of the THP enantiomers to ct-DNA were determined with the methods of microdialysis/HPLC and frontal affinity chromatography. In addition, the DNA structural preference of either enantiomer was evaluated with the chromatographic methods.  相似文献   

5.
We report the synthesis of the hydrazone ligands, 1-(phenyl-hydrazono)-propan-2-one (PHP), 1-(p-tolyl-hydrazono)-propan-2-one (THP), 1-[(4-chloro-hydrazono)]-propan-2-one (CHP), and their Ni(II) and Cu(II) metal complexes. The structure of the ligands and their complexes were investigated using elemental analysis, magnetic susceptibility, molar conductance and spectral (IR, UV, and EPR) measurements. IR spectra indicate that the free ligands exist in the hydrazo-ketone rather than azo-enol form in the solid state. Also, the hydrazo-NH exists as hydrogen bonded to the keto-oxygen either as intra or as intermolecular hydrogen bonding. In all the studied complexes, all ligands behave as a neutral bidentate ligands with coordination involving the hydrazone-nitrogen and the keto-oxygen atoms. The magnetic and spectral data indicate a square planar geometry for Cu2+ complexes and an octahedral geometry for Ni2+ complexes. The ligands and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. They were found to be more active against Gram-positive than Gram-negative bacteria. It may be concluded that the antimicrobial activity of the compounds is related to cell wall structure of bacteria.Protonation constant of (PHP) ligand and stability constants of its Cu2+ and Ni2+ complexes were determined by potentiometric titration method in aqueous solution at ionic strength of 0.1 M sodium nitrate. It has been observed that the hydrazone ligand (PHP) titrated here has one protonation constant. The divalent metal ions Cu2+ and Ni2+ form with (PHP) 1:1 and 1:2 complexes. The insolubility of (THP) and (CHP) ligands in aqueous medium does not permit the determination of their protonation constants and formation constants of the corresponding complexes in aqueous solution.  相似文献   

6.
To facilitate predictions of the transport and fate of contaminants at future coal conversion facilities, rates of microbial transformation of polycyclic aromatic hydrocarbons were measured in stream water and sediment samples collected in the vicinity of a coal-coking treated wastewater discharge from November 1977 through August 1979. Six radiolabeled polycyclic aromatic hydrocarbons were incubated with sediment and water samples; 14CO2, cell-bound 14C, and polar transformation products were isolated and quantified. Whereas 14CO2 and bound 14C were major transformation products in sediment assays, soluble polar 14C dominated transformation in water samples. Mean rate constants (measured at 20°C) in sediments collected downstream from the effluent outfall were 7.8 × 10−2 h−1 (naphthalene), 1.6 × 10−2 h−1 (anthracene), and 3.3 × 10−3 h−1 [benz(a)anthracene], which corresponded to turnover times of 13, 62, and 300 h, respectively. No unequivocal evidence for transformation of benzo(a)pyrene or dibenz(a,h)anthracene was obtained. Only naphthalene and anthracene transformations were observed in water samples; rate constants were consistently 5- and 20-fold lower, respectively, than in the corresponding sediment samples. The measured rate constants for anthracene transformation in July 1978 sediment samples were not related to total heterotroph numbers. In late July 1978, the effluent was diverted from the primary study area; however, no differences were observed either in transformation rate constants or in the downstream/upstream sediment rate constant ratio. These results are consistent with the hypothesis that continuous inputs of polycyclic aromatic hydrocarbons result in an increased ability within a microbial community to utilize certain polycyclic aromatic hydrocarbons. However, because transformation rates remained elevated for more than 1 year after removal of the polycyclic aromatic hydrocarbon source, microbial communities may shift only slowly in response to changes in polycyclic aromatic hydrocarbon concentrations.  相似文献   

7.
Pyruvate kinase M2 (PKM2) regulates the final step of glycolysis levels that are correlated with the sensitivity of anticancer chemotherapeutic drugs. THP is one of the major drugs used in non‐muscle‐invasive bladder cancer instillation chemotherapy. However, low response ratio of THP (19.7%) treatment to human genitourinary tumours using collagen gel matrix has been observed. This study aims to investigate the effect of down‐regulation of PKM2 on THP efficiency. Via inhibitor or siRNA, the effects of reduced PKM2 on the efficiency of THP were determined in 2 human and 1 murine bladder cancer cell lines, using MTT, cologenic and fluorescence approaches. Molecular mechanisms of PKM2 on THP sensitization were explored by probing p‐AMPK and p‐STAT3 levels via WB. Syngeneic orthotopic bladder tumour model was applied to evaluate this efficiency in vivo, analysed by Kaplan‐Meier survival curves, body and bladder weights plus immunohistochemistric tumour biomarkers. PKM2 was overexpressed in bladder cancer cells and tissues, and down‐regulation of PKM2 enhanced the sensitivity of THP in vitro. Activation of AMPK is essential for THP to exert anti‐bladder cancer activities. On the other hand, down‐regulating PKM2 activates AMPK and inhibits STAT3, correlated with THP sensitivity. Compared with THP alone (400 μmol L?1, 50 μL), the combination with metformin (60 mmol L?1, 50 μL) stopped growth of bladder cancer completely in vivo (combination group VS normal group P = .078). Down‐regulating the expression of PKM2 enhances the anticancer efficiency of THP. This study provides a new insight for improving the chemotherapeutic effect of THP.  相似文献   

8.
Differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and quantum calculation based on molecular modeling were applied to investigate the interaction between pirarubicin (THP), an anthracycline antibiotic frequently used in chemotherapy, and zwitterionic distearoylphosphatidylcholine (DSPC) or anionic distearoylphosphatidylglycerol (DSPG). DSC and FTIR studies suggested that DSPG bilayers were less perturbed by THP than those of DSPC, and this might be due to the strong interactions between NH3+ of THP and the phosphate (PO2) group in the polar head of DSPG, which limit the further access of THP into its bilayers. Quantum calculation results based on molecular modeling could further confirm the DSC and FTIR conclusions. Meanwhile, it could well translate the calorimetric and spectroscopic phenomena into the underlying physical knowledge. Interactions between THP and phospholipids can play a critical role in the liposomal drug delivery system, especially in the safety mechanism elucidation and rational formulation design.  相似文献   

9.
Both Tamm-Horsfall protein (THP) and collectin-11 (CL-11) are important molecules in acute kidney injury (AKI). In this study, we measured the change of glycosylation of THP in patients with AKI after surgery, using MALDI-TOF MS and lectin array analysis. The amount of high-mannose and core fucosylation in patients with AKI were higher than those in healthy controls. In vitro study showed that THP could bind to CL-11 with affinity at 9.41 × 10−7 mol/L and inhibited activation of complement lectin pathway. The binding affinity decreased after removal of glycans on THP. Removal of fucose completely ablated the binding between the two proteins. While removal of high-mannose or part of the N-glycan decreased the binding ability to 30% or 60%. The results indicated that increase of fucose on THP played an important role via complement lectin pathway in AKI.  相似文献   

10.
Two novel coordination compounds of half-sandwiched ruthenium(II) containing 2-(5-fluorouracil)-yl-N-(pyridyl)-acetamide were synthesized, and their intercalation binding modes with calf thymus DNA were revealed by hyperchromism of ultraviolet-visible spectroscopy; the binding constants were determined according to a Langmuir adsorption equation that was deduced on the base of careful cyclic voltammetry measurements. The two compounds exhibited DNA intercalation binding activities with the binding constants of 1.13×106 M-1 and 5.35 ×105 M-1, respectively.  相似文献   

11.
6[3-(1-Adamantyl)-4-methoxyphenyl]-2-naphthoic acid (Adapalene®), a synthetic aromatic retinoid specific for RARβ and RARγ receptors, has been prepared utilizing a Pd/C-mediated Suzuki coupling between 6-bromo-2-naphthoic acid and 4-methoxyphenyl boronic acid, followed by introduction of an adamantyl group in the position 3 of the formed 6-(4-methoxyphenyl)-2-naphthoic acid. The interaction of 6-(4-methoxyphenyl)-2-naphthoic acid/ethyl ester and the 3-adamantyl analogs with DNA was studied in aqueous solution at physiological conditions by UV–vis spectroscopy. The calculated binding constants Kligand–DNA ranged between 1.1 × 104 M−1 and 1.1 × 105 M−1, the higher values corresponding to those of the adamantylated compounds. Molecular modeling studies have emphasized that the intercalative binding of adapalene and its derivatives to DNA is mainly stabilized by hydrophobic interactions related to the presence of the adamantyl group.  相似文献   

12.
The kinetics of45Ca2+ efflux were examined at circumscribed sites in the perfused hippocampus of the freely moving rat with either one of two tetrahydroisoquinoline (TIQ) products, tetrahydropapaveroline (THP) or salsolinol. Guide tubes for unilateral push-pull perfusion were implanted stereotaxically to rest just above sites within the dorsal hippocampus. Upon recovery from surgery, a tissue site in the hippocampus was prelabeled with 1.0 l of45Ca2+ (2.0 Ci) injected through the indwelling guide tube. After 16–20 hr had elapsed, successive push-pull perfusions of the site were carried out with an artificial cerebrospinal fluid (CSF), at 5.0 min intervals and at a rate of 20 l/min, in order to obtain a control washout curve of declining radioactivity. On the fifth of a series of 5.0 min perfusions, either THP or salsolinol was added to the perfusion medium in a concentration of 10 or 100 ng/l. Then the hippocampal site was perfused again with control CSF for the collection of an additional three samples. Although THP in both of the test concentrations generally augmented the efflux of45Ca2+, the temporal course and magnitude of the enhancement depended on the anatomical site of the perfusion. In the more rostral hippocampal planes of AP 3.0 and AP 4.0, THP caused a delayed efflux of the cation, after the perfusion of THP had been discontinued, in nearly half of the loci reactive to the TIQ. Similarly, salsolinol enhanced significantly the efflux of45Ca2+ in a concentration-dependent manner during the interval of its perfusion within the hippocampal plane of AP 3.0. These results suggest that both THP and salsolinol can affect differentially the kinetics of45Ca2+ efflux and that these differences are contingent on the circumscribed anatomical site of push-pull perfusion. It is envisaged that a part of the neurochemical effects of the two TIQs when acting centrally are mediated by membrane mechanisms involving Ca2+ transport, metabolism or other cellular activity of the cation.  相似文献   

13.
The aim of this study was to confirm the protective effect of tetrahydropalmatine (THP) against irradiation-induced rat pulmonary endothelial cell apoptosis and to explore the underlying mechanism, with a focus on the calcium-sensing receptor (CaSR)/phospholipase C-γ1 (PLC-γ1) pathway. We established a model of irradiation-induced primary rat pulmonary endothelial cell injury. Cell apoptosis and mitochondrial membrane potential (Δψm) were measured by flow cytometry. The expression of CaSR, cytochrome c, PLC-γ1, reactive oxygen species (ROS) and [Ca2+]i was also determined. Caspase-3 and caspase-9 activities were measured using commercial kits. Inositol triphosphate (IP3) and the production of inflammatory cytokines were detected by enzyme-linked immunosorbent assay. The results showed that THP significantly inhibited irradiation-induced cell apoptosis and intracellular accumulation of ROS. Pretreatment with THP significantly decreased the expression of CaSR, inhibited the CaSR/PLC-γ1 pathway and subsequent [Ca2+]i overload stimulated by irradiation. THP, NPS2390 (inhibitor of CaSR), U73122 (inhibitor of PLC-γ1) and 2-APB (inhibitor of IP3) further decreased cell apoptosis, along with down-regulation of cytochrome c, caspase-3 and caspase-9 activation, disruption of Δψm and the production of inflammatory cytokines. These findings suggest that THP protects primary rat pulmonary endothelial cells against irradiation-induced apoptosis by inhibiting oxidative stress and the CaSR/PLC-γ1 pathway.  相似文献   

14.
Observations of induced circular dichroism (CD) bands in chloroform solution demonstrate the formation of specific, asymmetric complexes of the aromatic ligands 2-pyridone and 2,6-dichlorobenzoic acid with cyclic dipeptides of the general formula cyclo(L-Pro-X). The induced CD changes sign with the configuration of X due to subtle influences of the side chain on the geometry of the complex. Computations of interaction energies suggest that a plausible model for the complex of an aromatic ligand with the -CONH- of the cis secondary amide is a nearly planar arrangement of six heavy atoms in a ring containing two hydrogen bonds. The observed CD is matched by that computed for a tilt of the aromatic ligand toward the side chain of X. Binding constants were determined from the induced CD as a function of ligand concentration. For dichlorobenzoic acid these are about 450m?1 for the secondary amide and 50m?1 for the tertiary amide. For pyridone the binding constant is about 45m?1 for either the secondary or tertiary amide. For comparison self-dimerization constants determined by vapor-pressure osmometry in chloroform solution at 25°C are 870, 350, 50, and 20m?1 for pyridone, benzoic acid, dichlorobenzoic acid, and cyclo(L-Pro-Gly), respectively.  相似文献   

15.
A series of ethylenediamine platinum(II) complexes connected through semi-rigid chains of 1,2-bis(4-pyridyl)ethane to DNA intercalating subunits (naphthalene, anthracene or phenazine) has been synthesized, and their interactions with calf thymus (CT) DNA have been evaluated by viscometric titrations and equilibrium dialysis experiments. The parent ligands that contain anthracene or phenazine chromophores showed a monointercalative mode of DNA interaction (especially the anthracene derivative), with apparent association constants in the order of 104 M?1. The corresponding platinum(II) complexes bind CT DNA through bisintercalation, as established by the significant increase of DNA contour length inferred from viscosity measurements, and the association constants are in the order of 105 M?1. The naphthalene derivatives, however, exhibit a mixed mode of interaction, which suggests a partial contribution of both intercalation and groove binding for the ligand, and monointercalation in the case of the platinum(II) complex. Competition dialysis experiments carried out on the intercalative compounds have revealed a moderate selectivity towards GC DNA sequences for the derivatives containing the anthracene chromophore.  相似文献   

16.
Pirarubicin (THP), an anthracycline anticancer drug, is a first‐line therapy for various solid tumours and haematologic malignancies. However, THP can cause dose‐dependent cumulative cardiac damage, which limits its therapeutic window. The mechanisms underlying THP cardiotoxicity are not fully understood. We previously showed that MiR‐129‐1‐3p, a potential biomarker of cardiovascular disease, was down‐regulated in a rat model of THP‐induced cardiac injury. In this study, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses to determine the pathways affected by miR‐129‐1‐3p expression. The results linked miR‐129‐1‐3p to the Ca2+ signalling pathway. TargetScan database screening identified a tentative miR‐129‐1‐3p‐binding site at the 3′‐UTR of GRIN2D, a subunit of the N‐methyl‐D‐aspartate receptor calcium channel. A luciferase reporter assay confirmed that miR‐129‐1‐3p directly regulates GRIN2D. In H9C2 (rat) and HL‐1 (mouse) cardiomyocytes, THP caused oxidative stress, calcium overload and apoptotic cell death. These THP‐induced changes were ameliorated by miR‐129‐1‐3p overexpression, but exacerbated by miR‐129‐1‐3p knock‐down. In addition, miR‐129‐1‐3p overexpression in cardiomyocytes prevented THP‐induced changes in the expression of proteins that are either key components of Ca2+ signalling or important regulators of intracellular calcium trafficking/balance in cardiomyocytes including GRIN2D, CALM1, CaMKⅡδ, RyR2‐pS2814, SERCA2a and NCX1. Together, these bioinformatics and cell‐based experiments indicate that miR‐129‐1‐3p protects against THP‐induced cardiomyocyte apoptosis by down‐regulating the GRIN2D‐mediated Ca2+ pathway. Our results reveal a novel mechanism underlying the pathogenesis of THP‐induced cardiotoxicity. The miR‐129‐1‐3p/Ca2+ signalling pathway could serve as a target for the development of new cardioprotective agents to control THP‐induced cardiotoxicity.  相似文献   

17.
Electric field pulses induce a substantial increase of the light scattering intensity of double-helical DNA. The relative change of light scattering and also the reciprocal relaxation time constants under electric field pulses increase with increasing nucleotide concentration. These observations, together with a large difference between dichroism orientation time constants and light scattering time constants under electric field pulses, demonstrate that the main part of the light scattering effect is due not to field-induced orientation but to interactions between DNA helices. From the concentration dependence of the light scattering time constants we obtain, according to an isodesmic reaction model, association rate constants in the range 3 × 1010 M?1 helices s?1 for DNA with approx. 300 base-pairs. These values are at the limit of a diffusion-controlled DNA association and do not show any dependence upon the field strength. The dissociation rate constants kd decrease strongly with increasing field strength E and thus demonstrate that the interactions between the helices are induced by the electric field. This conclusion is consistent with independent measurements which do not reveal any DNA association at zero field strength. The observed linear relation between log(kd) and E2 suggests a field-induced reaction driven by dipole changes. According to this interpretation the change of dipole moment should be in the range of approx. 1400 debye. The dissociation rates for DNA helices with approx. 300 to approx. 800 base-pairs strongly increase with increasing sail concentration (measured in the range 1–5 mM ionic strength), whereas the association rate constants remain virtually unchanged. Measurements of the linear dichroism in the same range of DNA chain length demonstrate that for long field pulses of e.g., 40 μs, the amplitude approaches a maximum value and then decreases. The dichroism relaxation curves observed after long field pulses exhibit a component with a positive dichroism and an increased decay time. These observations suggest the formation of a DNA aggregate with an unusual arrangement of the bases.  相似文献   

18.
Caffeine (CAF) is capable of interacting directly with several genotoxic aromatic ligands by stacking aggregation. Formation of such hetero-complexes may diminish pharmacological activity of these ligands, which is often related to its direct interaction with DNA. To check these interactions we performed three independent series of spectroscopic titrations for each ligand (ethidium bromide, EB, and propidium iodine, PI) according to the following setup: DNA with ligand, ligand with CAF and DNA-ligand mixture with CAF. We analyzed DNA-ligand and ligand-CAF mixtures numerically using well known models: McGhee-von Hippel model for ligand-DNA interactions and thermodynamic-statistical model of mixed association of caffeine with aromatic ligands developed by Zdunek et al. (2000). Based on these models we calculated association constants and concentrations of mixture components using a novel method developed here. Results are in good agreement with parameters calculated in separate experiments and demonstrate de-intercalation of EB and PI molecules from DNA caused by CAF.  相似文献   

19.
Dinuclear CuII complexes, [Cu2(salophen)2] ( 1 ) and [Cu2(salen)2] ( 2 ), with Schiff bases derived from salicylaldehyde and o‐phenylenediamine (ophen) or ethylenediamine (en) were synthesized and characterized. They exhibit square‐planar geometry with CuN2O2 coordination, where the dianionic Schiff base acts as a tetradentate N2O2 donor ligand. Calf thymus (CT)‐DNA Binding studies revealed that the complexes possess good binding propensities (Kb=3.13×105 for 1 and Kb=2.99×105 M −1 for 2 ). They show good DNA‐cleavage abilities under oxidative and hydrolytic conditions. Complex 1 binds and cleaves DNA more efficiently as compared to 2 due to the presence of an extended aromatic phenyl ring which might be involved in an additional stacking interaction with DNA bases. From the kinetic experiments, hydrolytic DNA‐cleavage rate constants were determined as 1.54 for 1 and 0.72 h−1 for 2 . The nuclease activities of 1 and 2 are significant, giving rise to (2.03–2.88)×107‐fold rate enhancement compared to non‐catalyzed DNA cleavage.  相似文献   

20.
The ability of a series of tetrahydroisoquinoline (THIQ) alkaloids to inhibit the binding of radioligands to catecholamine receptors in the CNS has been examined. (+) THP was the most potent inhibitor of [3H] dihydroalprenolol binding to β-adrenergic receptors and of [3H] haloperidol to dopaminergic receptors and was the least potent inhibitor of [3H] WB-4101 binding to α-adrenergic receptors. Other THIQ alkaloids examined such as salsoline, salsolinol, and reticuline were less potent than (+) THP in inhibiting radioligand binding to β-adrenergic and dopaminergic receptors, and more potent than (+) THP in inhibiting radioligand to α-adrenergic receptors. The marked potency of (+) THP in inhibiting radioligand binding to β-adrenergic receptors (IC50 ~ 10?7 M) was confirmed by the potency of this compound in inhibiting (?) isoproternol elicited accumulations of cyclic AMP in brain slice preparations. These data indicate that, if formed invivo during alcohol consumption, THIQ derivatives such as THP may affect catecholamine neurons in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号