首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, rapid and sensitive method termed dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography-mass spectrometry (GC/MS) was developed for the determination of tricyclic antidepressants (TCAs) in human urine sample. An appropriate mixture of methanol (disperser solvent), carbon tetrachloride (extraction solvent), and acetic anhydride (derivatization reagent) was injected rapidly into human urine sample. After extraction, the sedimented phase was analyzed by GC/MS. The calibration curves obtained with human urine were linear with a correlation coefficient of over 0.99 in the range of 2.0/5.0-100 ng mL(-1). Under the optimum conditions (carbon tetrachloride: 10 μL, methanol: 150 μL), the detection limits and the quantification limits of the tricyclic antidepressants were 0.5-2.0 ng mL(-1) and 2.0-5.0 ng mL(-1), respectively. The average recoveries of TCAs were 88.2-104.3%. Moreover, the inter- and intra-day precision and accuracy was acceptable at all concentrations. The results showed that DLLME is applicable to the determination of trace amounts of TCAs in human urine sample.  相似文献   

2.
A new method that involves miniaturized hollow fiber assisted liquid-phase microextraction (HF-LPME) with in situ derivatization and gas chromatography-mass spectrometry (GC-MS) is described for the determination of trace amounts of bisphenol A (BPA) in human urine samples. The detection limit and the quantification limit of BPA in human urine sample are 0.02 and 0.1 ng ml(-1) (ppb), respectively. The calibration curve for BPA is linear with a correlation coefficient of >0.999 in the range of 0.1-50 ng ml(-1). The average recoveries of BPA in human urine samples spiked with 1 and 5 ng ml(-1) BPA are 101.0 (R.S.D.: 6.7%) and 98.8 (R.S.D.: 1.8%), respectively, with correction using the added surrogate standard, bisphenol A-(13)C12. This simple, accurate, sensitive and selective analytical method can be applicable to the determination of trace amounts of BPA in human urine samples.  相似文献   

3.
Acetone is an important volatile disease marker. Due to its nature of activity and volatility, it is a difficult task to measure the concentration of acetone in biological samples with accuracy. In this paper, we developed a novel method for determination of trace amount acetone in human plasma by solid-phase microextraction technique with on-fiber derivatization. In this method, the poly(dimethylsiloxane)/divinylbenzene (PDMS/DVB) fiber was used and O-2,3,4,5,6-(pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) was first loaded on the fiber. Acetone in plasma sample was agitated into headspace and extracted by solid-phase microextraction (SPME) fiber and subsequently derivatized with PFBHA on the fiber. Acetone oxime was analyzed by gas chromatography-mass spectrometry (GC-MS). Quantitative analysis of acetone in plasma was carried out by using external standard method. The SPME conditions (extraction temperature and time) and the method validation were studied. The present method was tested by determination of acetone in diabetes plasma and normal plasma. Acetone concentration in diabetes plasma was found to be higher than 1.8mM, while in normal plasma was lower than 0.017 mM. The results show that the present method is a potential tool for diagnosis of diabetes.  相似文献   

4.
A method for the determination of volatile chlorinated hydrocarbons, namely dichloromethane (DCM), trichloroethylene (TCE), and perchloroethylene (PCE), in urine samples was developed using headspace solid phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS). HS-SPME was performed using a 75 microm Carboxen-polydimethylsiloxane fiber. Factors, which affect the HS-SPME process, such as adsorption and desorption times, stirring, salting-out effect, and temperature of sampling have been evaluated and optimized. The highest extraction efficiency was obtained when sampling was performed at room temperature (22 degrees C), from samples saturated with salt and under agitation. Linearity of the HS-SPME-GC-MS method was established over four orders of magnitude and the limit of detection was 0.005 microg/l for all the compounds. Precision, calculated as %R.S.D. at three different concentration levels, was within 1-8% for all intra- and inter-day determinations. The method was applied to the quantitative determination of TCE and PCE in human urine samples from exposed (TCE, n=5; median, 9.32 microg/l and PCE, n=39; median, 0.58 microg/l) and non-exposed individuals (n=120; median concentrations, 0.64, 0.22 and 0.11 microg/l for DCM, TCE and PCE, respectively. In addition, two cases of acute accidental exposure to DCM are reported, and the elimination kinetics in blood and urine was followed up. The calculated half-lives of urinary and blood DCM were, respectively, 7.5 and 8.1 h for one subject and 3.8 and 4.3 h for the other.  相似文献   

5.
An approach using microwave-assisted derivatization (MAD) following solid-phase extraction (SPE) combined with gas chromatography-mass spectrometry (GC-MS) was developed to determine amphetamines in urine samples. The parameters affecting the derivatization efficiency - including microwave power and irradiation time - were investigated. Besides, solvent is thought critically important to MAD. Derivatization performance was studied using various solvents and compared with the performance obtained without solvent. Derivatization efficiency was clearly found to be enhanced by the presence of solvent. The highest derivatization efficiencies were obtained in ethyl acetate (EA) under microwave power of 250W for 1min. Calibration curves for all amphetamines were linear over a range from 1 to 1000ng/mL, with correlation coefficients above 0.9992. The intra-day and inter-day precision were less than 15%. The applicability of the method was tested by analyzing amphetamine-abusing subjects urine samples. Accordingly, the solvent-enhanced MAD-GC-MS method appears to be adequate for determining amphetamines in urine.  相似文献   

6.
This study investigated the feasibility of applying solid-phase microextraction (SPME) combined with gas chromatography–mass spectrometry to analyze chlorophenols in urine. The SPME experimental procedures to extract chlorophenols in urine were optimized with a polar polyacrylate coated fiber at pH 1, extraction time for 50 min and desorption in GC injector at 290°C for 2 min. The linearity was obtained with a precision below 10% R.S.D. for the studied chlorophenols in a wide range from 0.1 to 100 μg/l. In addition, sample extraction by SPME was used to estimate the detection limits of chlorophenols in urine, with selected ion monitoring of GC–MS operated in the electron impact mode and negative chemical ionization mode. Detection limits were obtained at the low ng/l levels. The application of the methods to the determination of chlorophenols in real samples was tested by analyzing urine samples of sawmill workers. The chlorophenols were found in workers, the urinary concentration ranging from 0.02 μg/l (PCP) to 1.56 μg/l (2,4-DCP) depending on chlorophenols. The results show that trace chlorophenols have been detected with SPME–GC–MS in the workers of sawmill where chlorophenol-containing anti-stain agents had been previously used.  相似文献   

7.
Morphine is present in varying amounts as an endogenous product in human urine. Derivatization of morphine contained in urine with dansyl chloride yields a known product, which can be quantified by liquid chromatography mass spectrometry with high selectivity and sensitivity. Urine samples of 51 healthy individuals were spiked with stable-isotope labeled morphine, hydrolyzed and subjected to solid phase extraction followed by derivatization of morphine with dansyl chloride. The dansyl derivatives of naturally occurring morphine and deuterated internal standard were then detected by liquid chromatography-triple quadrupole mass spectrometry. Using the [N-CD(3)]-labeled internal standard and solid-phase extraction, a limit of detection of 35 fmol/ml (10 pg/ml) and a limit of quantification of 87.5 fmol/ml (25 pg/ml) was determined for morphine in human urine. This new LC-MS/MS method allowed the detection of endogenous morphine in human urine of 51 volunteers with an average value of 156.4 fmol/ml (44.7 ng/ml).  相似文献   

8.
Transmission of HIV from mother to infant can be effectively prevented by zidovudine (3'-azido-3'-deoxythymidine; AZT) alone or in combination with other anti-retroviral drugs; however, significant evidence for genotoxicity, including transplacental carcinogenicity in mice, has been reported for AZT. A method, based upon solid phase extraction (SPE) in the 96-well format, gradient liquid chromatography (LC), and electrospray mass spectrometry (MS), was developed and validated to measure serum concentrations in maternal C57BL/6N and fetal B6C3F1 mice of the nucleoside analogs AZT, lamivudine ((-)2',3'-dideoxy-3'-thiacytidine; 3TC), and several metabolites selected based on importance in detoxification and bioactivation reactions. After intravenous (i.v.) and oral dosing with either 400 mg/kg AZT or 200 mg/kg 3TC, pharmacokinetics were determined for AZT, AZT-5'-glucuronide, 3'-amino-3'-deoxythymidine (AMT), AZT-5'-phosphate, 3TC, and 3TC-5'-phosphate in serum of adult female mice. Pharmacokinetics were also determined in spleen for AZT-5'-phosphate and 3TC-5'-phosphate following i.v. dosing. In addition, a preliminary assessment was made of placental transfer of AZT and 3TC and the presence of metabolites in the fetal compartment. The method described provides a means to evaluate thoroughly metabolism and disposition of anti-retroviral nucleoside analogs in maternal and fetal mice for comprehensive studies of genotoxicity.  相似文献   

9.
A novel solid-phase microextraction (SPME) method was developed for isolation of dextromethorphan (DM) and its main metabolite dextrorphan (DP) from human plasma followed by GC-MS determination. Three different polymers, poly(dimethylsiloxane) (PDMS), poly(ethylenepropyleneglycol) monobutyl ether (Ucon) and polyethylene glycol (PEG) were synthesized as coated fibers using sol-gel methodologies. DP was converted to its acetyl-derivative prior to extraction and subsequent determination. The porosity of coated fibers was examined by SEM technique. Effects of different parameters such as fiber coating type, extraction mode, agitation method, sample volume, extraction time, and desorption condition, were investigated and optimized. The method is rapid, simple, easy and inexpensive and offers high sensitivity and reproducibility. The limits of detection are 0.010 and 0.015 ng/ml for DM and DP, respectively. The precisions for both analytes are below 5% (n=5). The correlation coefficient was satisfactory (r(2)>0.99) for both DM and DP. Linear ranges were obtained from 0.03 ng/ml to 2 microg/ml for DM and from 0.05 ng/ml to 2 microg/ml for DP.  相似文献   

10.
Alkylresorcinols (AR) are amphiphilic compounds present at high concentrations in the outer parts of wheat and rye kernels. Due to their specificity to whole grain and bran products of these cereals, AR and their metabolites have been proposed as biomarkers for intake of such foods. Two alkylresorcinol metabolites, 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-1-propanoic acid (DHPPA), have previously been quantified in human urine using two different methodologies: high-performance liquid chromatography coupled to a coulometric electrode array detector (HPLC-CEAD) and gas chromatography in combination with mass spectrometry (GC-MS). In this study, these two methodologies were compared by analysing 114 urine samples from free-living Swedish subjects consuming their habitual diet. Data were evaluated by graphical investigation of difference-plots and statistical inference of agreement was assessed by weighted Deming regression analysis. The median DHBA concentrations were 11 μM (GC-MS) and 13 μM (HPLC-CEAD), respectively. Both difference-plot and regression analysis showed a small but statistically significant additive bias, with HPLC-CEAD resulting in a slightly higher DHBA concentration than GC-MS. The median concentration of DHPPA was 18 μM for both methods. Examination of the difference-plot of DHPPA did not indicate any systematic difference between the methods, but regression analysis showed small but statistically significant constant and proportional biases. The conclusion was that the two methodologies are equally suitable for analysis of alkylresorcinol metabolites in human urine and that any small systematic differences observed are most likely of limited practical importance.  相似文献   

11.
A sensitive and straightforward method for the determination of trihalomethanes (THMs) in urine by using headspace extraction technique has been developed. Chemical and instrumental variables were studied in order to optimize the method for sensitivity: an excess of KCl (4 g per 12 ml of urine), an oven temperature of 85 degrees C and an equilibration time of 30 min were selected. The use of the mass spectrometer in selected ion monitoring mode allows achieving linear ranges between 10 and 5000 ng/l and detection limits from 3 to 10 ng/l, for 12 ml of urine. The stability of the urine sample during storage at 4 and -20 degrees C was also evaluated: THMs remained stable for up to 2 days and 2 months, respectively. Finally, the method was successfully applied to study the THM uptake from swimmers of an indoor swimming pool, as well as non-swimmers. This study revealed that the concentrations of THMs in urine increased approximately three times for chloroform and bromodichloromethane after swimming activity. In addition, THMs in unchanged form were mainly excreted within 2-3h after the end of exposure.  相似文献   

12.
We devised a sensitive and simple method to simultaneously determine bromvalerylurea and allylisopropylacetylurea in human blood and urine by gas chromatography-mass spectrometry. Bromvalerylurea and allylisopropylacetylurea were extracted using an Extrelut column with an internal standard, 2-bromohexanoylurea, followed by derivatization with heptafluorobutyric anhydride. The derivatized extract was submitted to GC-MS analysis of EI-SIM mode. The calibration curves of both compounds were linear in the concentration range from 0.01 to 10 microg/ml in both blood and urine samples. The lower limits of detection of bromvalerylurea and allylisopropylacetylurea were 0.005 and 0.005 microg/ml, respectively. This method proved most useful in accurately identifying these drugs in blood and urine from an autopsied individual.  相似文献   

13.
A new method based on direct solid-phase microextraction (DI-SPME) followed by gas chromatography-mass spectrometry was developed for the purpose of determining quinalphos in blood and urine. Two types of coated fibre have been assayed and compared: carbowax/divinylbenzene (CW/DVB 65 microm) and polydimethylsiloxane (PDMS 100 microm). The main parameters affecting the SPME process such as temperature, salt addition, pH, stirring and adsorption/desorption time profiles were optimized to enhance the sensitivity of the procedure. The method was developed using only 100 microL of blood and urine. Limits of detection of the method for blood and urine matrices were, respectively, 10 and 2 ng/mL. Linearity was established over concentration ranges from 0.05 to 50 microg/mL for blood, and 0.01 to 50 microg/mL for urine, with regression coefficients ranging between 0.9991 and 0.9999. Intra- and interday precision values were less than 13%, and accuracy was within +/-15% of the nominal concentration for all studied levels in both matrices. Absolute recoveries were 14 and 26% for blood and urine, respectively.  相似文献   

14.
The purpose of this study was to develop a simple and accurate analytical method to determine amino acids in urine samples. The developed method involves the employment of an extract derivatization technique together with gas chromatography-mass spectrometry (GC-MS). Urine samples (300 microl) and an internal standard (10 microl) were placed in a screw tube. Ethylchloroformate (50 microl), methanol-pyridine (500 microl, 4:1, v/v) and chloroform (1 ml) were added to the tube. The organic layer (1 microl) was injected to a GC-MS system. In this proposed method, the amino acids in urine were derivatized during an extraction, and the analytes were then injected to GC-MS without an evaporation of the organic solvent extracted. Sample preparation was only required for ca. 5 min. The 15 amino acids (alanine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, tyrosine, tryptophan, valine) quantitatively determined in this proposed method. However, threonine, serine, asparagine, glutamine, arginine were not derivatized using any tested derivatizing reagent. The calibration curves showed linearity in the range of 1.0-300 microg/ml for each amino acid in urine. The correlation coefficients of the calibration curves of the tested amino acids were from 0.966 to 0.998. The limit of detection in urine was 0.5 microg/ml except for aspartic acid. This proposed method demonstrated substantial accuracy for detection of normal levels. This proposed method was limited for the determination of 15 amino acids in urine. However, the sample preparation was simple and rapid, and this method is suitable for a routine analysis of amino acids in urine.  相似文献   

15.
A reliable method has been developed for the determination of pyronaridine in human urine using amodiaquine as an internal standard. Liquid-liquid extraction was used for sample preparation. Analysis was performed on a Shimadzu LCMS-2010 in single ion monitoring positive mode using atmospheric pressure chemical ionization (APCI) as an interface. The extracted ion for pyronaridine was m/z 518.20 and for amodiaquine was m/z 356.10. Chromatography was carried out using a Gemini 5 microm C18 3.0 mmx150 mm column using 2 mM perflurooctanoic acid and acetonitrile mixture as a mobile phase delivered at a flow rate of 0.5 mL/min. The mobile phase was delivered in gradient mode. The retention times of pyronaridine and amodiaquine were 9.1 and 8.1 min respectively, with a total run time of 14 min. The assay was linear over a range of 14.3-1425 ng/mL for pyronaridine (R2>or=0.992, weighted 1/Concentration). The analysis of quality control samples for pyronaridine at 28.5, 285, 684 and 1140 ng/mL demonstrated excellent precision with relative standard deviation of 5.1, 2.3, 3.9 and 9.2%, respectively (n=5). Recoveries at concentrations of 28.5, 285, 684 and 1140 ng/mL were all greater than 85%.This LC-MS method for the determination of pyronaridine in human urine has excellent specifications for sensitivity, reproducibility and accuracy and can reliably quantitate concentrations of pyronaridine in urine as low as 14.3 ng/mL. The method will be used to quantify pyronaridine in human urine for pharmacokinetic and drug safety studies.  相似文献   

16.
Hepcidin is a peptide hormone that functions as a key regulator of mammalian iron metabolism. Serum and urine levels are increased in inflammation and suppressed in hemochromatosis, and they may have diagnostic importance. This study describes the development and validation of an analytical method for the quantitative determination of the concentration of hepcidin in clinical samples. A stable, isotopically labeled internal standard, [15N,13C2]Gly12,20-hepcidin, was synthesized and a standard quantity was added to urine samples. Extraction was performed using weak cation exchange magnetic nanoparticles. An ion trap mass spectrometer was used to quantify hepcidin in the samples. The hepcidin assay was validated, and good recovery of hepcidin was obtained. The assay is accurate and precise. Urinary hepcidin levels of 3 to 9 nmol/mmol creatinine−1 were found in healthy controls, with reduced levels in hemochromatosis (P < 0.00006) and elevated levels in inflammation (P < 0.00035). In sickle cell disease, a wide range was found, with the mean value not differing significantly from controls (P < 0.26). In summary, a validated method has been developed for the quantitation of hepcidin using a stable, isotopically labeled internal standard and applied to determine the concentrations of hepcidin in the low nanomolar range in urine samples from patients and controls.  相似文献   

17.
Simultaneous determination of seven barbiturates in human whole blood and urine by combining direct immersion solid-phase microextraction (DI-SPME) with gas chromatography-mass spectrometry (GC-MS) is presented. The main parameters affecting the DI-SPME process, such as SPME fibers, salt additives, pHs, extraction temperatures and immersion times were optimized for simultaneous determination of the drugs. The extraction efficiencies were 0.0180-0.988 and 0.0156-2.76% for whole blood and urine, respectively. The regression equations of the drugs showed excellent linearity for both samples; the correlation coefficients (r(2)) were 0.994-0.999. The detection limits for whole blood were 0.05-1 microg x ml(-1), and those for urine 0.01-0.6 microg x ml(-1). Actual quantitation could be made for pentobarbital in whole blood and urine obtained from volunteers, who had been orally administered a therapeutic dose of the drug. The DI-SPME/GC-MS procedure for barbiturates established in this study is simple and sensitive enough to be adopted in the fields of clinical and forensic toxicology.  相似文献   

18.
A gas chromatography-mass spectrometry (GC-MS) method was developed for measuring 1,2-dihydroxynaphthalene (1,2-DHN) and 1,4-dihydroxynaphthalene (1,4-DHN) in urine. The method involves enzymatic digestion of urinary conjugates to release the DHNs which were then analyzed as trimethylsilyl derivatives by GC-MS. For 1,2-DHN and 1,4-DHN, respectively, the assay limits of detection were 0.21 and 0.15 microg/l, the assay limits of quantitation were 0.69 and 0.44 microg/l, and the coefficients of variation were 14.7 and 10.9%. This method was successfully applied to determine urinary levels of 1,2-DHN and 1,4-DHN in coke workers (14 top workers and 13 side-bottom workers) and 21 matching control workers from the steel industry of northern China. The geometric mean (GM) levels of 1,2-DHN were approximately 100 and 30 times higher than those of 1,4-DHN in exposed and control subjects, respectively. The GM levels 1,2-DHN and 1,4-DHN were significantly higher for coke workers (1,2-DHN: top workers--552 microg/l, side-bottom workers--260 microg/l; 1,4-DHN: top workers--3.42 microg/l, side-bottom workers--3.56 microg/l) than for controls (1,2-DHN: 38.8 microg/l; 1,4-DHN: 1.21 microg/l) (por=0.623; p<0.0001). Also, levels of 1,2-DHN were significantly correlated with those of serum albumin adducts of l,2-naphthoquinone (rs=0.492, p=0.0004). These results indicate that 1,2- and 1,4-DHN are good biomarkers for assessment of naphthalene exposure in coke workers. Since the DHNs are precursors of the naphthoquinones, which have been implicated as toxic products of naphthalene metabolism, measurements of urinary DHNs may have toxicological significance.  相似文献   

19.
Concerned with variations in abuse potential and control status among various isomers of ephedrines and norephedrines, this study was conducted to develop an effective method for the simultaneous analysis of eight ephedrine-related compounds along with structurally similar cathinones. Among various approaches studied, a 60-m HP-5MS (0.25 mm i.d., 0.25 microm film thickness) was successfully used to characterize the following compounds that were derivatized with (-)-alpha-methoxy-alpha-trifloromethylphenylacetic acid (MTPA): (+)-cathinone, (-)-cathinone, (+)-norephedrine, (-)-norephedrine, (+)-norpseudoephedrine, (+)-ephedrine, (-)-ephedrine, (-)-pseudoephedrine, (+)-pseudoephedrine. (-)-Cathine standard was not available, but should also be resolvable under this analytical procedure. This method was successfully applied to the analysis of selected cold remedies for characterizing the enantiomeric compositions of the compounds present in these samples.  相似文献   

20.
A high-sensitivity analytical method that uses stir bar sorptive extraction (SBSE) with in situ derivatization and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS) for the simultaneous measurement of trace amounts of phenolic xenoestrogens (PXs), such as 2,4-dichlorophenol (DCP), 4-tert-butylphenol (BP), 4-tert-octylphenol (OP), 4-nonylphenol technical isomers (NP), pentachlorophenol (PCP) and bisphenol A (BPA), in human urine samples was developed. The urine sample (1 ml) was de-conjugated by adding beta-glucuronidase and sulfatase. Then, protein precipitation was performed by the addition of acetonitrile. After centrifugation, the supernatant was diluted with purified water and subjected to SBSE with in situ derivatization and TD-GC-MS. The detection limits of DCP, BP, OP, NP, PCP and BPA in the urine samples were 20, 10, 10, 50, 20 and 20 pg ml-1 (ppt), respectively. The calibration curves for PXs were linear and had correlation coefficients higher than 0.99. The average recoveries of those analytes in the urine samples were higher than 95% (RSD: <10%, n=6) with correction using the added surrogate standards. This simple, accurate, sensitive and selective method can be used in the determination of PXs in human urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号