首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In animal cells, cytokinesis occurs by constriction of an actomyosin ring. In fission yeast cells, ring constriction is triggered by the septum initiation network (SIN), an SPB-associated GTPase-regulated kinase cascade that coordinates exit from mitosis with cytokinesis. We have identified a novel protein, Etd1p, required to trigger actomyosin ring constriction in fission yeasts. This protein is localised at the cell tips during interphase. In mitosis, it relocates to the medial cortex region and, coincident with cytokinesis, it assembles into the actomyosin ring by association to Cdc15p. Relocation of Etd1p from the plasma membrane to the medial ring is triggered by SIN signalling and, reciprocally, relocation of the Sid2p-Mob1p kinase complex from the SPB to the division site, a late step in the execution of the SIN, requires Etd1p. These results suggest that Etd1p coordinates the mitotic activation of SIN with the initiation of actomyosin ring constriction. Etd1p peaks during cytokinesis and is degraded by the ubiquitin-dependent 26S-proteasome pathway at the end of septation, providing a mechanism to couple inactivation of SIN to completion of cytokinesis.  相似文献   

2.
Cell division in the fission yeast Schizosaccharomyces pombe requires the formation and constriction of an actomyosin ring at the division site. The actomyosin ring is assembled in metaphase and anaphase A, is maintained throughout mitosis, and constricts after completion of anaphase. Maintenance of the actomyosin ring during late stages of mitosis depends on the septation initiation network (SIN), a signaling cascade that also regulates the deposition of the division septum. However, SIN is not active in metaphase and is not required for the initial assembly of the actomyosin ring early in mitosis. The FER/CIP4-homology (FCH) domain protein Cdc15p is a component of the actomyosin ring. Mutations in cdc15 lead to failure in cytokinesis and result in the formation of elongated, multinucleate cells without a division septum. Here we present evidence that the requirement of Cdc15p for actomyosin ring formation is dependent on the stage of mitosis. Although cdc15 mutants are competent to assemble actomyosin rings in metaphase, they are unable to maintain actomyosin rings late in mitosis when SIN is active. In the absence of functional Cdc15p, ring formation upon metaphase arrest depends on the anillin-like Mid1p. Interestingly, when cytokinesis is delayed due to perturbations to the division machinery, Cdc15p is maintained in a hypophosphorylated form. The dephosphorylation of Cdc15p, which occurs transiently in unperturbed cytokinesis, is partially dependent on the phosphatase Clp1p/Flp1p. This suggests a mechanism where both SIN and Clp1p/Flp1p contribute to maintenance of the actomyosin ring in late mitosis through Cdc15p, possibly by regulating its phosphorylation status.  相似文献   

3.
The Schizosaccharomyces pombe septation initiation network (SIN) is an Spg1-GTPase-mediated protein kinase cascade that triggers actomyosin ring constriction, septation, and cell division. The SIN is assembled at the spindle pole body (SPB) on the scaffold proteins Cdc11 and Sid4, with Cdc11 binding directly to SIN signaling components. Proficient SIN activity requires the asymmetric distribution of its signaling components to one of the two SPBs during anaphase, and Cdc11 hyperphosphorylation correlates with proficient SIN activity. In this paper, we show that the last protein kinase in the signaling cascade, Sid2, feeds back to phosphorylate Cdc11 during mitosis. The characterization of Cdc11 phosphomutants provides evidence that Sid2-mediated Cdc11 phosphorylation promotes the association of the SIN kinase, Cdc7, with the SPB and maximum SIN signaling during anaphase. We also show that Sid2 is crucial for the establishment of SIN asymmetry, indicating a positive-feedback loop is an important element of the SIN.  相似文献   

4.
Cdc14-family phosphatases play a conserved role in promoting mitotic exit and cytokinesis by dephosphorylating substrates of cyclin-dependent kinase (Cdk). Cdc14-family phosphatases have been best studied in yeast (for review, see [1, 2]), where budding yeast Cdc14 and its fission yeast homolog Clp1 are regulated partly by their localization; both proteins are thought to be sequestered in the nucleolus in interphase. Cdc14 and Clp1 are released from the nucleolus in mitosis, and in late mitosis conserved signaling pathways termed the mitotic exit network (MEN) and the septation initiation network (SIN) keeps Cdc14 and Clp1, respectively, out of the nucleolus through an unknown mechanism [3-6]. Here we show that the most downstream SIN component, the Ndr-family kinase Sid2, maintains Clp1 in the cytoplasm in late mitosis by phosphorylating Clp1 directly and thereby creating binding sites for the 14-3-3 protein Rad24. Mutation of the Sid2 phosphorylation sites on Clp1 disrupts the Clp1-Rad24 interaction and causes Clp1 to return prematurely to the nucleolus during cytokinesis. Loss of Clp1 from the cytoplasm in telophase renders cells sensitive to perturbation of the actomyosin ring but does not affect other Clp1 functions. Because all components of this pathway are conserved, this might be a broadly conserved mechanism for regulation of Cdc14-family phosphatases.  相似文献   

5.
The Schizosaccharomyces pombe septation initiation network (SIN) signals the onset of cell division from the spindle pole body (SPB) and is regulated by the small GTPase Spg1p. The localization of SIN components including Spg1p to the SPB is required for cytokinesis and is dependent on Sid4p, a constitutive resident of SPBs. However, a direct interaction between Sid4p and other members of the SIN has not been detected. To understand how Sid4p is linked to other SIN components, we have begun to characterize an S. pombe homolog of the Saccharomyces cerevisiae SPB protein Nud1p. We have determined that this S. pombe Nud1p homolog corresponds to Cdc11p, a previously uncharacterized SIN element. We report that Cdc11p is present constitutively at SPBs and that its function appears to be required for the localization of all other SIN components to SPBs with the exception of Sid4p. The Cdc11p C terminus localizes the protein to SPBs in a Sid4p-dependent manner, and we demonstrate a direct Cdc11p-Sid4p interaction. The N-terminus of Cdc11p is required for Spg1p binding to SPBs. Our studies indicate that Cdc11p provides a physical link between Sid4p and the Spg1p signaling pathway.  相似文献   

6.
The Schizosaccharomyces pombe septation initiation network (SIN) triggers actomyosin ring constriction, septation, and cell division. It is organized at the spindle pole body (SPB) by the scaffold proteins Sid4p and Cdc11p. Here, we dissect the contributions of Sid4p and Cdc11p in anchoring SIN components and SIN regulators to the SPB. We find that Sid4p interacts with the SIN activator, Plo1p, in addition to Cdc11p and Dma1p. While the C terminus of Cdc11p is involved in binding Sid4p, its N-terminal half is involved in a wide variety of direct protein-protein interactions, including those with Spg1p, Sid2p, Cdc16p, and Cdk1p-Cdc13p. Given that the localizations of the remaining SIN components depend on Spg1p or Cdc16p, these data allow us to build a comprehensive model of SIN component organization at the SPB. FRAP experiments indicate that Sid4p and Cdc11p are stable SPB components, whereas signaling components of the SIN are dynamically associated with these structures. Our results suggest that the Sid4p-Cdc11p complex organizes a signaling hub on the SPB and that this hub coordinates cell and nuclear division.  相似文献   

7.
Characterizing protein-protein interactions is essential for understanding molecular mechanisms, although reproducing cellular conditions in vitro is challenging and some proteins are difficult to purify. We developed a method to measure binding to cellular structures using fission yeast cells as reaction vessels. We varied the concentrations of Sid2p and Mob1p (proteins of the septation initiation network) and measured their binding to spindle pole bodies (SPBs), the centrosome equivalent of yeast. From our measurements we infer that Sid2p and Mob1p both exist as monomeric, heterodimeric, and homodimeric species throughout the cell cycle. During interphase these species have widely different affinities for their common receptor Cdc11p on the SPB. The data support a model with a subset of Cdc11p binding the heterodimeric species with a Kd < 0.1 μM when Sid2p binds Mob1p-Cdc11p and Kd in the micromolar range when Mob1p binds Sid2p-Cdc11p. During mitosis an additional species presumed to be the phosphorylated Sid2p−Mob1p heterodimer binds SPBs with a lower affinity. Homodimers of Sid2p or Mob1p bind to the rest of Cdc11p at SPBs with lower affinity: Kds > 10 μM during interphase and somewhat stronger during mitosis. These measurements allowed us to account for the fluctuations in Sid2p binding to SPBs throughout the cell cycle.  相似文献   

8.
The septation initiation network (SIN) triggers the onset of cytokinesis in the fission yeast Schizosaccharomyces pombe by promoting contraction of the medially placed F-actin ring. SIN signaling is regulated by the polo-like kinase plo1p and by cdc2p, the initiator of mitosis, and its activation is co-ordinated with other events in mitosis to ensure that cytokinesis does not begin until chromosomes have been separated. Though the SIN controls the contractile ring, the signal originates from the poles of the mitotic spindle. Recent studies suggest that the spindle pole body may act as a dynamic assembly site for active SIN signaling complexes. In the budding yeast Saccharomyces cerevisiae the counterpart of the SIN, called the MEN, mediates both mitotic exit and cytokinesis, in part through regulating activation of the phosphoprotein phosphatase Cdc14p. Flp1p, the S. pombe ortholog of Cdc14p, is not essential for mitotic exit, but may contribute to an orderly mitosis-G1 transition by regulating the destruction of the mitotic inducer cdc25p.  相似文献   

9.
The mechanisms that regulate cytoskeletal remodeling during the transition between mitosis and interphase are poorly understood. In fission yeast the MOR pathway promotes actin polarization to cell tips in interphase, whereas the SIN signaling pathway drives actomyosin ring assembly and cytokinesis. We show that the SIN inhibits MOR signaling in mitosis by interfering with Nak1 kinase-mediated activation of the most downstream MOR component, the NDR family kinase Orb6. Inactivation of the MOR may be a key function of the SIN because attenuation of MOR signaling rescued the cytokinetic defects of SIN mutants and allowed weak SIN signaling to trigger ectopic cytokinesis. Furthermore, failure to inhibit the MOR is toxic when the cell division apparatus is compromised. Together, our results reveal a mutually antagonistic relationship between the SIN and MOR pathways, which is important for completion of cytokinesis and coordination of cytoskeletal remodeling at the mitosis-to-interphase transition.  相似文献   

10.
Proper cell division requires strict coordination between mitotic exit and cytokinesis. In the event of a mitotic error, cytokinesis must be inhibited to ensure equal partitioning of genetic material. In the fission yeast, Schizosaccharomyces pombe, the checkpoint protein and E3 ubiquitin ligase, Dma1, delays cytokinesis by inhibiting the septation initiation network (SIN) when chromosomes are not attached to the mitotic spindle. To elucidate the mechanism by which Dma1 inhibits the SIN, we screened all SIN components as potential Dma1 substrates and found that the SIN scaffold protein, Sid4, is ubiquitinated in vivo in a Dma1-dependent manner. To investigate the role of Sid4 ubiquitination in checkpoint function, a ubiquitination deficient sid4 allele was generated and our data indicate that Sid4 ubiquitination by Dma1 is required to prevent cytokinesis during a mitotic checkpoint arrest. Furthermore, Sid4 ubiquitination delays recruitment of the Polo-like kinase and SIN activator, Plo1, to spindle pole bodies (SPBs), while at the same time prolonging residence of the SIN inhibitor, Byr4, providing a mechanistic link between Dma1 activity and cytokinesis inhibition.  相似文献   

11.
Cytokinesis must be initiated only after chromosomes have been segregated in anaphase and must be terminated once cleavage is completed. We show that the fission yeast protein Etd1 plays a central role in both of these processes. Etd1 activates the guanosine triphosphatase (GTPase) Spg1 to trigger signaling through the septum initiation network (SIN) pathway and onset of cytokinesis. Spg1 is activated in late anaphase when spindle elongation brings spindle pole body (SPB)–localized Spg1 into proximity with its activator Etd1 at cell tips, ensuring that cytokinesis is only initiated when the spindle is fully elongated. Spg1 is active at just one of the two SPBs during cytokinesis. When the actomyosin ring finishes constriction, the SIN triggers disappearance of Etd1 from the half of the cell with active Spg1, which then triggers Spg1 inactivation. Asymmetric activation of Spg1 is crucial for timely inactivation of the SIN. Together, these results suggest a mechanism whereby cell asymmetry is used to monitor cytoplasmic partitioning to turn off cytokinesis signaling.  相似文献   

12.
Spatial and temporal regulation of cytokinesis is essential for cell division, yet the mechanisms that control the formation and constriction of the contractile ring are incompletely understood. In the fission yeast Schizosaccharomyces pombe proteins that contribute to the cytokinetic contractile ring accumulate during interphase in nodes—precursor structures around the equatorial cortex. During mitosis, additional proteins join these nodes, which condense to form the contractile ring. The cytokinesis protein Blt1p is unique in being present continuously in nodes from early interphase through to the contractile ring until cell separation. Blt1p was shown to stabilize interphase nodes, but its functions later in mitosis were unclear. We use analytical ultracentrifugation to show that purified Blt1p is a tetramer. We find that Blt1p interacts physically with Sid2p and Mob1p, a protein kinase complex of the septation initiation network, and confirm known interactions with F-BAR protein Cdc15p. Contractile rings assemble normally in blt1∆ cells, but the initiation of ring constriction and completion of cell division are delayed. We find three defects that likely contribute to this delay. Without Blt1p, contractile rings recruited and retained less Sid2p/Mob1p and Clp1p phosphatase, and β-glucan synthase Bgs1p accumulated slowly at the cleavage site.  相似文献   

13.
Cytokinesis in all organisms involves the creation of membranous barriers that demarcate individual daughter cells. In fission yeast, a signaling module termed the septation initiation network (SIN) plays an essential role in the assembly of new membranes and cell wall during cytokinesis. In this study, we have characterized Slk1p, a protein-kinase related to the SIN component Sid2p. Slk1p is expressed specifically during meiosis and localizes to the spindle pole bodies (SPBs) during meiosis I and II in a SIN-dependent manner. Slk1p also localizes to the forespore membrane during sporulation. Cells lacking Slk1p display defects associated with sporulation, leading frequently to the formation of asci with smaller and/or fewer spores. The ability of slk1Δ cells to sporulate, albeit inefficiently, is fully abolished upon compromise of function of Sid2p, suggesting that Slk1p and Sid2p play overlapping roles in sporulation. Interestingly, increased expression of the syntaxin Psy1p rescues the sporulation defect of sid2-250 slk1Δ. Thus, it is likely that Slk1p and Sid2p play a role in forespore membrane assembly by facilitating recruitment of components of the secretory apparatus, such as Psy1p, to allow membrane expansion. These studies thereby provide a novel link between the SIN and vesicle trafficking during cytokinesis.  相似文献   

14.
The fission yeast Schizosaccharomyces pombe divides by medial fission through the use of an actomyosin contractile ring. Precisely at the end of anaphase, the ring begins to constrict and the septum forms. Proper coordination of cell division with mitosis is crucial to ensure proper segregation of chromosomes to daughter cells. The Sid2p kinase is one of several proteins that function as part of a novel signaling pathway required for initiation of medial ring constriction and septation. Here, we show that Sid2p is a component of the spindle pole body at all stages of the cell cycle and localizes transiently to the cell division site during medial ring constriction and septation. A medial ring and an intact microtubule cytoskeleton are required for the localization of Sid2p to the division site. We have established an in vitro assay for measuring Sid2p kinase activity, and found that Sid2p kinase activity peaks during medial ring constriction and septation. Both Sid2p localization to the division site and activity depend on the function of all of the other septation initiation genes: cdc7, cdc11, cdc14, sid1, spg1, and sid4. Thus, Sid2p, a component of the spindle pole body, by virtue of its transient localization to the division site, appears to determine the timing of ring constriction and septum delivery in response to activating signals from other Sid gene products.  相似文献   

15.
The septation initiation network (SIN) serves to coordinate cytokinesis with mitotic exit in the fission yeast Schizosaccharomyces pombe. SIN components Spg1 and Cdc7 together play a central role in regulating the onset of septation and cytokinesis. Spg1, a Ras-like GTPase, localizes to the spindle pole bodies (SPBs) throughout the cell cycle. It is converted to its GTP-bound (active) state during mitosis, only to become inactivated at one SPB during anaphase and at both SPBs as cells exit mitosis. Cdc7 functions as an effector kinase for Spg1, binding to Spg1 in its GTP-bound state, and therefore is present at both SPBs during mitosis and asymmetrically at only one during anaphase. Interestingly, the kinase activity of Cdc7 does not vary across the cell cycle, suggesting the possibility that Cdc7 kinase activity is independent of Spg1 binding. Consistent with this, we found that Cdc7 associates with Spg1 only during mitosis. To learn more about the essential role of Cdc7 kinase in the SIN and its regulation, we undertook a structure/function analysis and identified independent functional domains within Cdc7. We found that a region adjacent to the kinase domain is responsible for Spg1 association and identified an overlapping but distinct SPB localization domain. In addition Cdc7 associates with itself and exists as a dimer in vivo.  相似文献   

16.
In the filamentous fungus, Aspergillus nidulans, multiple rounds of nuclear division occur before cytokinesis, allowing an unambiguous identification of genes required specifically for cytokinesis. As in animal cells, both an intact microtubule cytoskeleton and progression through mitosis are required for actin ring formation and contraction. The sepH gene from A. nidulans was discovered in a screen for temperature-sensitive cytokinesis mutants. Sequence analysis showed that SEPH is 42% identical to the serine-threonine kinase Cdc7p from fission yeast. Signalling through the Septation Initiation Network (SIN), which includes Cdc7p and the GTPase Spg1p, is emerging as a primary regulatory pathway used by fission yeast to control cytokinesis. A similar group of proteins comprise the Mitotic Exit Network (MEN) in budding yeast. This is the first direct evidence for the existence of a functional SIN-MEN pathway outside budding and fission yeast. In addition to SEPH, potential homologues were also identified in other fungi and plants but not in animal cells. Deletion of sepH resulted in a viable strain that failed to septate at any temperature. Interestingly, quantitative analysis of the actin cytoskeleton revealed that sepH is required for construction of the actin ring. Therefore, SEPH is distinct from its counterpart in fission yeast, in which SIN components operate downstream of actin ring formation and are necessary for ring contraction and later events of septation. We conclude that A. nidulans has components of a SIN-MEN pathway, one of which, SEPH, is required for early events during cytokinesis.  相似文献   

17.
Krapp A  Simanis V 《Current biology : CB》2005,15(15):R605-R607
A novel mutant screen in fission yeast has identified the 'ethanol dependent' protein etd1p as a potential link between the septation initiation network (SIN), which initiates cytokinesis, and the actomyosin contractile ring that drives separation of the two daughter cells at the end of mitosis.  相似文献   

18.
Characterizing protein-protein interactions is essential for understanding molecular mechanisms, although reproducing cellular conditions in vitro is challenging and some proteins are difficult to purify. We developed a method to measure binding to cellular structures using fission yeast cells as reaction vessels. We varied the concentrations of Sid2p and Mob1p (proteins of the septation initiation network) and measured their binding to spindle pole bodies (SPBs), the centrosome equivalent of yeast. From our measurements we infer that Sid2p and Mob1p both exist as monomeric, heterodimeric, and homodimeric species throughout the cell cycle. During interphase these species have widely different affinities for their common receptor Cdc11p on the SPB. The data support a model with a subset of Cdc11p binding the heterodimeric species with a Kd < 0.1 μM when Sid2p binds Mob1p-Cdc11p and Kd in the micromolar range when Mob1p binds Sid2p-Cdc11p. During mitosis an additional species presumed to be the phosphorylated Sid2p−Mob1p heterodimer binds SPBs with a lower affinity. Homodimers of Sid2p or Mob1p bind to the rest of Cdc11p at SPBs with lower affinity: Kds > 10 μM during interphase and somewhat stronger during mitosis. These measurements allowed us to account for the fluctuations in Sid2p binding to SPBs throughout the cell cycle.  相似文献   

19.
In the fission yeast Schizosaccharomyces pombe, the septation initiation network (SIN) triggers cytokinesis after mitosis. We investigated the relationship between Dma1p, a spindle checkpoint protein and cytokinesis inhibitor, and the SIN. Deletion of dma1 inactivates the spindle checkpoint and allows precocious SIN activation, while overexpressing Dma1p reduces SIN signaling. Dma1p seems to function by inhibiting the SIN activator, Plo1p kinase, since dma1 overexpression and deletion phenotypes suggest that Dma1p antagonizes Plo1p localization. Furthermore, failure to maintain high cyclin-dependent kinase (CDK) activity during spindle checkpoint activation in dma1 deletion cells requires Plo1p. Dma1p itself localizes to spindle pole bodies through interaction with Sid4p. Our observations suggest that Dma1p functions to prevent mitotic exit and cytokinesis during spindle checkpoint arrest by inhibiting SIN signaling.  相似文献   

20.
Schizosaccharomyces pombe cells divide through the use of an actomyosin-based contractile ring. In response to perturbation of the actomyosin ring, S. pombe cells delay in a "cytokinesis-competent" state characterized by continuous repair and maintenance of the actomyosin ring and a G2 delay. This checkpoint mechanism requires the function of the Cdc14p-family phosphatase Clp1p/Flp1p and the septation initiation network (SIN). In response to cytokinetic defects, Clp1p, normally nucleolar in interphase, is retained in the cytoplasm until completion of cell division in a SIN-dependent manner. Here, we show that a phosphorylated form of Clp1p binds the 14-3-3 protein Rad24p and is retained in the cytoplasm in a Rad24p-dependent manner in response to cytokinesis defects. This physical interaction depends on the function of the SIN component, Sid2p. In the absence of Rad24p, cells are unable to maintain SIN signaling and lose viability upon mild cytokinetic stress. The requirement of Rad24p in this checkpoint is bypassed by ectopic activation of the SIN. Furthermore, SIN-dependent nuclear exclusion of Clp1p is dependent on Rad24p function. We conclude that Rad24p-mediated cytoplasmic retention of Clp1p/Flp1p is important for cell viability upon stress to the division apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号