首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of phospholipase Cgamma1 (PLC-gamma1) contains two SH2 domains and one SH3 domain. While the function of the SH2 domains in PLC-gamma1 are well described, to date no growth factor-dependent function for the SH3 domain has been presented. To assess SH3 domain function in the context of the full-length PLC-gamma1, this domain was deleted and the mutant was stably expressed in Plcg1 null mouse embryonic fibroblasts. Following EGF treatment of cells, the PLC-gamma1DeltaSH3 mutant displayed the same increased level of tyrosine phosphorylation and association with EGF receptor as wild-type PLC-gamma1. Also, the SH3 mutant demonstrated membrane translocation and mediated the mobilization of intracellular Ca(2+) in response to EGF. c-Cbl is shown to associate with tyrosine phosphorylated PLC-gamma1 in an EGF-dependent manner, but no association was detected with the PLC-gamma1DeltaSH3 mutant. Interestingly, PDGF, which also tyrosine phosphorylates PLC-gamma1, failed to induce c-Cbl association with PLC-gamma1 and also provoked no c-Cbl tyrosine phosphorylation. This suggests that c-Cbl tyrosine phosphorylation is necessary for its interaction with PLC-gamma1. Evidence of a direct association of c-Cbl with PLC-gamma1 was provided by pull-down and overlay experiments, using glutathione S-transferase fusion proteins that contain the SH3 domain of PLC-gamma1. The data, therefore, show an EGF-inducible direct association of PLC-gamma1 with c-Cbl in vivo that is mediated by the SH3 domain of PLC-gamma1.  相似文献   

2.
Oncogenes,protein tyrosine kinases,and signal transduction   总被引:1,自引:0,他引:1  
Many oncogenes encode protein tyrosine kinases (PTKs). Oncogenic mutations of these genes invariably result in constitutive activation of these PTKs. Autophosphorylation of the PTKs and tyrosine phosphorylation of their cellular substrates are essential events for transmission of the mitogenic signal into cells. The recent discovery of the characteristic amino acid sequences, of thesrc homology domains 2 and 3 (SH2 and SH3), and extensive studies on proteins containing the SH2 and SH3 domains have revealed that protein tyrosine-phosphorylation of PTKs provides phosphotyrosine sites for SH2 binding and allows extracellular signals to be relayed into the nucleus through a chain of protein-protein interactions mediated by the SH2 and SH3 domains. Studies on oncogenes, PTKs and SH2/SH3-containing proteins have made a tremendous contribution to our understanding of the mechanisms for the control of cell growth, oncogenesis, and signal transduction. This review is intended to provide an outline of the most recent progress in the study of signal transduction by PTKs.  相似文献   

3.
R Sakai  A Iwamatsu  N Hirano  S Ogawa  T Tanaka  H Mano  Y Yazaki    H Hirai 《The EMBO journal》1994,13(16):3748-3756
p47v-crk (v-Crk), a transforming gene product containing Src homology (SH)-2 and -3 domains, induces an elevated level of tyrosine phosphorylation of several cellular proteins. Among these proteins, a 125-135 kDa protein (p130) shows marked phosphorylation at tyrosines and tight association with v-Crk, suggesting a direct signal mediator of v-Crk. Here we report the molecular cloning of rat p130 by immunoaffinity purification. The p130 is a novel SH3-containing signaling molecule with a cluster of multiple putative SH2-binding motifs of v-Crk. Immunochemical analyses revealed that p130 is highly phosphorylated at tyrosines during transformation by p60v-src (v-Src), as well as by v-Crk, forming stable complexes with these oncoproteins. The p130 behaves as an extremely potent substrate of kinase activity included in the complexes and it is a major v-Src-associated substrate of the Src kinase by partial peptidase mapping. Subcellular fractionation demonstrated that the cytoplasmic p130 could move to the membrane upon tyrosine phosphorylation. The p130 (designated Cas for Crk-associated substrate) is a common cellular target of phosphorylation signal via v-Crk and v-Src oncoproteins, and its unique structure indicates the possible role of p130Cas in assembling signals from multiple SH2-containing molecules.  相似文献   

4.
CMS/CD2AP is a cytoplasmic protein critical for the integrity of the kidney glomerular filtration and the T cell function. CMS contains domains and motifs characteristic for protein-protein interactions, and it is involved in the regulation of the actin cytoskeleton. We report here that the individual SH3 domains of CMS bind to phosphotyrosine proteins of approximately 80, 90, and 180 kDa in cell lysates stimulated with epidermal growth factor. The second SH3 domain of CMS bound specifically to a tyrosine-phosphorylated protein of 120 kDa, which we identified as the proto-oncoprotein c-Cbl. The c-Cbl-binding site for CMS mapped to the carboxyl terminus of c-Cbl and is different from the proline-rich region known to bind SH3-containing proteins. CMS binding to c-Cbl was markedly attenuated in a tyrosine phosphorylation-defective c-Cbl mutant indicating that this interaction is dependent on the tyrosine phosphorylation of CMS. It also implies that CMS interacts with c-Cbl in an inducible fashion upon stimulation of a variety of cell-surface receptors. Immunofluorescence analysis revealed that both proteins colocalize at lamellipodia and leading edges of cells, and we propose that the interaction of CMS with c-Cbl offers a mechanism by which c-Cbl associates and regulates the actin cytoskeleton.  相似文献   

5.
src homology region 2 and 3 (SH2 and SH3) domains are conserved noncatalytic regions originally described in cytoplasmic tyrosine kinases and subsequently identified in phospholipase C gamma 1 (PLC gamma 1), GTPase-activating protein of ras, and other signaling proteins. Although numerous studies indicate that SH2 domains promote protein-protein interactions by specific binding to tyrosine phosphorylated proteins, the function of SH3 domains is not known. The SH2 domain of PLC gamma 1 binds to certain tyrosine-phosphorylated growth factor receptors, and following phosphorylation on Tyr783 the enzymatic activity of PLC gamma 1 is enhanced, leading to phosphatidylinositol hydrolysis. To determine the functional role of the SH2 domain(s) on substrate phosphorylation in quantitative terms, we have expressed in Escherichia coli PLC gamma 1 constructs encoding the region containing Tyr783 and Tyr771, their two flanking SH2 domains and the SH3 domain, and five different deletion mutants of this region. These six proteins were purified and subjected to quantitative phosphorylation by the epidermal growth factor receptor (EGFR). Analysis of the kinetics of substrate phosphorylation revealed similar Vmax for the phosphorylation of the various mutant proteins. However, the affinity was enhanced for substrates containing SH2 domains: from S0.5 (average apparent Km) of 110 microM to S0.5 of 20 microM with the addition of a single SH2 domain and S0.5 of 3-4 microM for mutants containing two SH2 domains. The presence of the SH3 domain did not influence the apparent Km of substrate phosphorylation. These results demonstrate that the presence of the SH2 domain in PLC gamma 1 lowers the apparent Km (increases the affinity) of substrate phosphorylation by the EGFR, thereby facilitating PLC gamma 1 phosphorylation and activation.  相似文献   

6.
The cellular homologs of the v-Crk oncogene product are composed exclusively of Src homology region 2 (SH2) and SH3 domains. v-Crk overexpression in fibroblasts causes cell transformation and elevated tyrosine phosphorylation of specific cellular proteins. Among these proteins is a 130-kDa protein, identified as p130cas, that forms a stable complex in vivo with v-Crk. We have explored the role of endogenous Crk proteins in Bcr-Abl-transformed cells. In the K562 human chronic myelogenous leukemia cell line, p130cas is not tyrosine phosphorylated or bound to Crk. Instead, Crk proteins predominantly associate with the tyrosine-phosphorylated proto-oncogene product of Cbl. In vitro analysis showed that this interaction is mediated by the SH2 domain of Crk and can be inhibited with a phosphopeptide containing the Crk-SH2 binding motif. In NIH 3T3 cells transformed by Bcr-Abl, c-Cbl becomes strongly tyrosine phosphorylated and associates with c-Crk. The complex between c-Crk and c-Cbl is also seen upon T-cell receptor cross-linking or with the transforming, tyrosine-phosphorylated c-Cbl. These results indicate that Crk binds to c-Cbl in a tyrosine phosphorylation-dependent manner, suggesting a physiological role for the Crk-c-Cbl complex in Bcr-Abl tyrosine phosphorylation-mediated transformation.  相似文献   

7.
The protein product of the c-Cbl proto-oncogene is prominently tyrosine phosphorylated in response to insulin in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. After insulin-dependent tyrosine phosphorylation, c-Cbl specifically associates with endogenous c-Crk and Fyn. These results suggest a role for tyrosine-phosphorylated c-Cbl in 3T3-L1 adipocyte activation by insulin. A yeast two-hybrid cDNA library prepared from fully differentiated 3T3-L1 adipocytes was screened with full-length c-Cbl as the target protein in an attempt to identify adipose-specific signaling proteins that interact with c-Cbl and potentially are involved in its tyrosine phosphorylation in 3T3-L1 adipocytes. Here we describe the isolation and the characterization of a novel protein that we termed CAP for c-Cbl-associated protein. CAP contains a unique structure with three adjacent Src homology 3 (SH3) domains in the C terminus and a region showing significant sequence similarity with the peptide hormone sorbin. Both CAP mRNA and proteins are expressed predominately in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. CAP associates with c-Cbl in 3T3-L1 adipocytes independently of insulin stimulation in vivo and in vitro in an SH3-domain-mediated manner. Furthermore, we detected the association of CAP with the insulin receptor. Insulin stimulation resulted in the dissociation of CAP from the insulin receptor. Taken together, these data suggest that CAP represents a novel c-Cbl binding protein in 3T3-L1 adipocytes likely to participate in insulin signaling.  相似文献   

8.
After engagement of the B cell receptor for antigen, the Syk protein-tyrosine kinase becomes phosphorylated on multiple tyrosines, some of which serve as docking sites for downstream effectors with SH2 or other phosphotyrosine binding domains. The most frequently identified binding partner for catalytically active Syk identified in a yeast two-hybrid screen was the p85 regulatory subunit of phosphoinositide 3-kinase. The C-terminal SH2 domain of p85 was sufficient for mediating an interaction with tyrosine-phosphorylated Syk. Interestingly, this domain interacted with Syk at phosphotyrosine 317, a site phosphorylated in trans by the Src family kinase, Lyn, and identified previously as a binding site for c-Cbl. This site interacted preferentially with the p85 C-terminal SH2 domain compared with the c-Cbl tyrosine kinase binding domain. Molecular modeling studies showed a good fit between the p85 SH2 domain and a peptide containing phosphotyrosine 317. Tyr-317 was found to be essential for Syk to support phagocytosis mediated by FcgammaRIIA receptors expressed in a heterologous system. These studies establish a new type of p85 binding site that can exist on proteins that serve as substrates for Src family kinases and provide a molecular explanation for observations on direct interactions between Syk and phosphoinositide 3-kinase.  相似文献   

9.
The CIN85/CMS (human homologs of mouse SH3KBP1/CD2AP) family of endocytic adaptor proteins has the ability to engage multiple effectors and couple cargo trafficking with the cytoskeleton. CIN85 and CMS (Cas ligand with multiple Src homology 3 (SH3) domains) facilitate the formation of large multiprotein complexes required for an efficient internalization of cell surface receptors. It has recently been shown that c-Cbl/Cbl-b could mediate the formation of a ternary complex between one c-Cbl/Cbl-b molecule and two SH3 domains of CIN85, important for the ability of Cbl to promote epidermal growth factor receptor down-regulation. To further investigate whether multimerization is conserved within the family of adaptor proteins, we have solved the crystal structures of the CMS N-terminal SH3 domain-forming complexes with Cbl-b- and CD2-derived peptides. Together with biochemical evidence, the structures support the notion that, despite clear differences in the interaction surface, both Cbl-b and CD2 can mediate multimerization of N-terminal CMS SH3 domains. Detailed analyses on the interacting surfaces also provide the basis for a differential Cbl-b molecular recognition of CMS and CIN85.  相似文献   

10.
11.
Tec family protein tyrosine kinases (TFKs) play a central role in hematopoietic cellular signaling. Initial activation takes place through specific tyrosine phosphorylation situated in the activation loop. Further activation occurs within the SH3 domain via a transphosphorylation mechanism, which for Bruton's tyrosine kinase (Btk) affects tyrosine 223. We found that TFKs phosphorylate preferentially their own SH3 domains, but differentially phosphorylate other member family SH3 domains, whereas non-related SH3 domains are not phosphorylated. We demonstrate that SH3 domains are good and reliable substrates. We observe that transphosphorylation is selective not only for SH3 domains, but also for dual SH3SH2 domains. However, the dual domain is phosphorylated more effectively. The major phosphorylation sites were identified as conserved tyrosines, for Itk Y180 and for Bmx Y215, both sites being homologous to the Y223 site in Btk. There is, however, one exception because the Tec-SH3 domain is phosphorylated at a non-homologous site, nevertheless a conserved tyrosine, Y206. Consistent with these findings, the 3D structures for SH3 domains point out that these phosphorylated tyrosines are located on the ligand-binding surface. Because a number of Tec family kinases are coexpressed in cells, it is possible that they could regulate the activity of each other through transphosphorylation.  相似文献   

12.
Lin X  Ayrapetov MK  Lee S  Parang K  Sun G 《Biochemistry》2005,44(5):1561-1567
Protein tyrosine kinases (PTKs) are important regulators of mammalian cell function and their own activities are tightly regulated. Underlying their tight regulation, all PTKs contain multiple regulatory domains in addition to a catalytic domain. C-terminal Src kinase (Csk) contains a catalytic domain and a regulatory region, consisting of an SH3 and an SH2 domain. In this study, we probed the communication between the regulatory and catalytic domains of Csk. First, kinetic characterization of SH3 and SH2 domain deletion mutants demonstrated that the SH3 and SH2 domains were crucial in maintaining the full activity of Csk, but were not directly involved in Csk recognition of its physiological substrate, Src. Second, highly conserved Trp188, corresponding to a key residue in domain-domain communication in other PTKs, was found to be important for maintaining the active structure of Csk by the presence of the regulatory region, but not required for Csk activation triggered by a phosphopeptide binding to the SH2 domain. Third, structural alignment indicated that the presence of the regulatory domains modulated the conformation of multiple substructures in the catalytic domain, some directly and others remotely. Mutagenic and kinetic studies supported this assignment. This report extended previous studies of Csk domain-domain communication, and provided a foundation for further detailed investigation of this communication.  相似文献   

13.
APS (adapter protein with Pleckstrin homology and Src homology 2 domains) is recruited by the autophosphorylated insulin receptor and is essential for Glut4 translocation. Although both APS and CAP (c-Cbl-associated protein) interact with c-Cbl during insulin signaling, the relative importance of each protein in recruiting c-Cbl has not been clear. We performed a side-by-side comparison by ectopic expression of APS or Src homology 2-Balpha (SH2-Balpha) and CAP in Chinese hamster ovary (CHO) cells. In cells co-expressing insulin receptor and CAP, without APS, no association of the insulin receptor and CAP could be detected and no insulin-stimulated phosphorylation of Cbl was observed. Insulin-stimulated Cbl phosphorylation was reconstituted when APS was co-expressed with insulin receptor, with or without CAP. APS or SH2-Balpha and CAP interacted in the basal state, and in the case of APS this interaction was mediated by the C terminus of APS. Insulin stimulation resulted in the dissociation of APS and CAP. Similarly, insulin stimulation also resulted in the dissociation of SH2-Balpha and CAP in CHO cells. CAP was localized to the membrane in the presence of APS. Insulin stimulation resulted in the re-localization of CAP to the cytosol only when APS was co-expressed. In 3T3-L1 adipocytes, small interfering RNA-mediated knockdown of the mouse APS gene abolished the insulin-stimulated phosphorylation of c-Cbl. Taken together, these results indicate that APS plays a central role in recruiting both CAP and c-Cbl to the insulin receptor after insulin stimulation and is necessary and sufficient for the insulin-stimulated phosphorylation of c-Cbl, whereas SH2-Balpha may provide an alternative pathway for the recruitment of CAP.  相似文献   

14.
Previous studies suggest that the stimulation of glucose transport by insulin involves the tyrosine phosphorylation of c-Cbl and the translocation of the c-Cbl/CAP complex to lipid raft subdomains of the plasma membrane. We now demonstrate that Cbl-b also undergoes tyrosine phosphorylation and membrane translocation in response to insulin in 3T3-L1 adipocytes. Ectopic expression of APS facilitated insulin-stimulated phosphorylation of tyrosines 665 and 709 in Cbl-b. The phosphorylation of APS produced by insulin drove the translocation of both c-Cbl and Cbl-b to the plasma membrane. Like c-Cbl, Cbl-b associates constitutively with CAP and interacts with Crk upon insulin stimulation. Cbl proteins formed homo- and heterodimers in vivo, which required the participation of a conserved leucine zipper domain. A Cbl mutant incapable of dimerization failed to interact with APS and to undergo tyrosine phosphorylation in response to insulin, indicating an essential role of Cbl dimerization in these processes. Thus, both c-Cbl and Cbl-b can initiate a phosphatidylinositol 3-kinase/protein kinase B-independent signaling pathway critical to insulin-stimulated GLUT4 translocation.  相似文献   

15.
16.
The phosphorylation of protein tyrosine kinases (PTKs) on tyrosine residues is a critical regulatory event that modulates catalytic activity and triggers the physical association of PTKs with Src homology 2 (SH2)-containing proteins. The integrin-linked focal adhesion kinase, pp125FAK, exhibits extracellular matrix-dependent phosphorylation on tyrosine and physically associates with two nonreceptor PTKs, pp60src and pp59fyn, via their SH2 domains. Herein, we identify Tyr-397 as the major site of tyrosine phosphorylation on pp125FAK both in vivo and in vitro. Tyrosine 397 is located at the juncture of the N-terminal and catalytic domains, a novel site for PTK autophosphorylation. Mutation of Tyr-397 to a nonphosphorylatable residue dramatically impairs the phosphorylation of pp125FAK on tyrosine in vivo and in vitro. The mutation of Tyr-397 to Phe also inhibits the formation of stable complexes with pp60src in cells expressing Src and FAK397F, suggesting that autophosphorylation of pp125FAK may regulate the association of pp125FAK with Src family kinases in vivo. The identification of Tyr-397 as a major site for FAK autophosphorylation provides one of the first examples of a cellular protein containing a high-affinity binding site for a Src family kinase SH2 domain. This finding has implications for models describing the mechanisms of action of pp125FAK, the regulation of the Src family of PTKs, and signal transduction through the integrins.  相似文献   

17.
APS is a Cbl-binding protein that is tyrosine phosphorylated by the insulin receptor kinase. Insulin-stimulated phosphorylation of tyrosine 618 in APS is necessary for its association with c-Cbl and the subsequent tyrosine phosphorylation of Cbl by the insulin receptor in both 3T3-L1 adipocytes and CHO-IR cells. When overexpressed in these cells, wild-type APS but not an APS/Y(618)F mutant facilitated the tyrosine phosphorylation of coexpressed Cbl and its association with Crk upon insulin stimulation. APS-facilitated phosphorylation occurred on tyrosines 371, 700, and 774 in the Cbl protein. APS also interacted directly with the c-Cbl-associated protein (CAP) and colocalized with the protein in cells. The association was dependent on the SH3 domains of CAP and was independent of insulin treatment. Overexpression of the APS/Y(618)F mutant in 3T3-L1 adipocytes blocked the insulin-stimulated tyrosine phosphorylation of endogenous Cbl and binding to Crk. Moreover, the translocation of GLUT4 from intracellular vesicles to the plasma membrane was also inhibited by overexpression of the APS/Y(618)F mutant. These data suggest that APS serves as an adapter protein linking the CAP/Cbl pathway to the insulin receptor and, further, that APS-facilitated Cbl tyrosine phosphorylation catalyzed by the insulin receptor is a crucial event in the stimulation of glucose transport by insulin.  相似文献   

18.
The c-Cbl protooncogene product is a prominent substrate of protein tyrosine kinases and is rapidly tyrosine-phosphorylated upon stimulation of a wide variety of cell-surface receptors. We have identified a novel c-Cbl-interacting protein termed CIN85 with a molecular mass of 85 kDa which shows similarity to adaptor proteins, CMS and CD2AP. CIN85 mRNA is expressed ubiquitously in normal human tissues and cancer cell lines analyzed. CIN85 was basally associated with c-Cbl. For interaction of CIN85 with c-Cbl, the second SH3 domain of CIN85 was shown to serve as a central player. The CIN85-c-Cbl association was enhanced shortly after stimulation of 293 cells with epidermal growth factor (EGF) and gradually diminished to a basal level, which correlated with a tyrosine phosphorylation level of c-Cbl. Our results suggest that CIN85 may play a specific role in the EGF receptor-mediated signaling cascade via its interaction with c-Cbl.  相似文献   

19.
SHIP2 (SH2-containing inositol polyphosphate 5-phosphatase 2) is a phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase containing various motifs susceptible to mediate protein-protein interaction. In cell models, SHIP2 negatively regulates insulin signalling through its catalytic PtdIns(3,4,5)P(3) 5-phosphatase activity. We have previously reported that SHIP2 interacts with the c-Cbl associated protein (CAP) and c-Cbl, proteins implicated in the insulin cellular response regulating the small G protein TC10. The first steps of the TC10 pathway are the recruitment and tyrosine phosphorylation by the insulin receptor of the adaptor protein with Pleckstrin Homology and Src Homology 2 domains (APS). Herein, we show that SHIP2 can directly interact with APS in 3T3-L1 adipocytes and in transfected CHO-IR cells (Chinese hamster ovary cells stably transfected with the insulin receptor). Upon insulin stimulation, APS and SHIP2 are recruited to cell membranes as seen by immunofluorescence studies, which is consistent with their interaction. We also observed that SHIP2 negatively regulates APS insulin-induced tyrosine phosphorylation and consequently inhibits APS association with c-Cbl. APS, which specifically interacts with SHIP2, but not PTEN, in turn, increases the PtdIns(3,4,5)P(3) 5-phosphatase activity of SHIP2 in an inositol phosphatase assay. Co-transfection of SHIP2 and APS in CHO-IR cells further increases the inhibitory effect of SHIP2 on Akt insulin-induced phosphorylation. Therefore, the interaction between APS and SHIP2 provides to both proteins potential negative regulatory mechanisms to act on the insulin cascade.  相似文献   

20.
CMS, cas ligand with multiple Src homology 3 (SH3) domains, belongs to a family of ubiquitously expressed adaptor proteins. Among the CMS binding proteins, c-Cbl has been mostly extensively studied. It was reported that the motif PKPFPR (residues 824-829) of c-Cbl can bind to the N-terminus SH3 domains of CMS. Here we report the solution structure of the second SH3 domain of CMS (CMS_SH3_B), furthermore, we have identified that a peptide from residues 701 to 714 of c-Cbl (Cbl-p), i.e. MTPSSRPLRPLDTS, can specially bind to CMS_SH3_B using NMR chemical shift perturbation, suggesting that the peptide is a new potential CMS binding site. Among the peptide, TPSSRPLR is the core binding motif and Arg709 plays a key role in the interaction. Cbl-p binding interface on CMS_SH3_B along a hydrophobic channel is composed of RT loop, n-Src loop and beta4 strand and divided into three pockets. This work indicates the solution structure of CMS_SH3_B bears the canonical beta-beta-beta-beta-alpha-beta fold and a new binding site in c-Cbl involved in its interaction with CMS, which probably contributes to the clustering of CMS. All the information provided here should be beneficial for the future functional study of CMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号