首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nineteen Burkholderia cepacia-like isolates of human and environmental origin could not be assigned to one of the seven currently established genomovars using recently developed molecular diagnostic tools for B. cepacia complex bacteria. Various genotypic and phenotypic characteristics were examined. The results of this polyphasic study allowed classification of the 19 isolates as an eighth B. cepacia complex genomovar (Burkholderia anthina sp. nov.) and to design tools for its identification in the diagnostic laboratory. In addition, new and published data for Burkholderia pyrrocinia indicated that this soil bacterium is also a member of the B. cepacia complex. This highlights another potential source for diagnostic problems with B. cepacia-like bacteria.  相似文献   

2.
The purpose of this study was to develop a novel strategy for the isolation and identification of Burkholderia cepacia complex bacteria from the home environment of cystic fibrosis (CF) patients. Water and soil samples were enriched in a broth containing 0.1% l-arabinose, 0.1% l-threonine, and a mixture of selective agents including 1 microgml(-1) C-390, 600U ml(-1) polymyxin B sulfate, 10 microgml(-1) gentamycin, 2 microgml(-1) vancomycin and 10 microgml(-1) cycloheximide. On selective media (consisting of the same components as above plus 1.8% agar), several dilutions of the enrichment broth were inoculated and incubated for 5 days at 28 degrees C. Isolates with different randomly amplified polymorphic DNA patterns were inoculated in Stewart's medium. Putative B. cepacia complex bacteria were confirmed by means of recA PCR and further identified by HaeIII-recA restriction fragment length polymorphism analysis. Our results suggest that these organisms may be more widespread in the home environment than previously assumed and that plant associated soil and pond water may be reservoirs of B. cepacia complex infection in CF patients.  相似文献   

3.
4.
Abstract Burkholderia cepacia has emerged as an important multiresistant pathogen in cystic fibrosis (CF), associated in 20% of colonised patients with a rapid and fatal decline in lung function. Although knowledge of B. cepacia epidemiology has improved, the mechanisms involved in pathogenesis remain obscure. In this study, B. cepacia lipopolysaccharide (LPS) was assessed for endotoxic potential and the capacity to induce tumour necrosis factor (TNF). LPS preparations from clinical and environmental isolates of B. cepacia and from the closely related species Burkholderia gladioli exhibited a higher endotoxic activity and more pronounced cytokine response in vitro compared to preparations from the major CF pathogen Pseudomonas aeruginosa . This study may help to explain the vicious host immune response observed during pulmonary exacerbations in CF patients colonised by B. cepacia and lead to therapeutic advances in clinical management.  相似文献   

5.
Thirteen strains of Burkholderia cepacia from various origins with mucoid and non-mucoid phenotypes were assayed for exopolysaccharide (EPS) production. The EPS were characterized by glycosyl composition analysis and examination of the products resulting from lithium-ethylenediamine and Smith degradations. The results showed that all strains, including the non-mucoid strains, were able to produce EPS exhibiting the same structural features, i.e. presence of one rhamnosyl, three galactosyl, one mannosyl, one glucosyl and one glucuronosyl residues, suggesting that this EPS is representative of the B. cepacia species.  相似文献   

6.
Previous studies have identified specific Burkholderia cepacia complex strains that are common to multiple persons with cystic fibrosis (CF). Such so-called epidemic strains have an apparent enhanced capacity for inter-patient spread and reside primarily in Burkholderia cenocepacia (formerly B. cepacia complex genomovar III). We sought to identify strains from B. cepacia complex species other than B. cenocepacia that are similarly shared by multiple CF patients. We performed genotype analysis of 360 recent sputum culture isolates from 360 persons residing in 29 cities by using repetitive extragenic palendromic polymerase chain reaction (rep-PCR) and pulsed field gel electrophoresis. The results indicate that sharing of a common Burkholderia multivorans strain occurs relatively infrequently; however, several small clusters of patients infected with the same strain were identified. A cluster of seven patients infected with the same B. cepacia (genomovar I) strain was found. We also identified a large group of 28 patients receiving care in the same treatment center and infected with the same Burkholderia dolosa strain. These observations suggest that B. cepacia complex strains in species other than B. cenocepacia may be spread among CF patients.  相似文献   

7.
Abstract Bacterial strains which are sensitive to the bactericidal activity of serum are generally considered to be less virulent than serum-resistant strains and are seldom associated with bacteraemia. Burkholderia ( Pseudomonas ) cepacia is an important pathogen in cystic fibrosis and is associated with rapid fatal pulmonary decline and bacteraemia in 20% of colonised patients. In this study 19 isolates of B. cepacia expressing either rough or smooth LPS were investigated to determine the degree of serum sensitivity. Strains expressing rough-LPS were serum-sensitive: these included a highly transmissible strain of B. cepacia isolated from approximately 50 cystic fibrosis patients attending various U.K. regional centres and associated with cases of bacteraemia.  相似文献   

8.
The production of exopolysaccharides (EPSs) by a mucoid clinical isolate of Burkholderia cepacia involved in infections in cystic fibrosis patients, was studied. Depending on the growth conditions, this strain was able to produce two different EPS, namely PS-I and PS-II, either alone or together. PS-I is composed of equimolar amounts of glucose and galactose with pyruvate as substituent, and was produced on all media tested. PS-II is constituted of rhamnose, mannose, galactose, glucose and glucuronic acid in the ratio 1:1:3:1:1, with acetate as substituent, and was produced on either complex or minimal media with high-salt concentrations (0.3 or 0.5 M NaCl). Although this behavior is strain-specific, and not cepacia-specific, the stimulation of production of PS-II in conditions that mimic those encountered by B. cepacia in the respiratory track of cystic fibrosis patients, suggests a putative role of this EPS in a pathologic context.  相似文献   

9.
AIMS: Burkholderia cepacia complex (Bcc) isolates causing pulmonary infection in cystic fibrosis (CF) patients grow within an acidic environment in the lung. As exposure to acid pH has been shown to increase intracellular inorganic polyphosphate (polyP) formation in some bacteria, we investigated the inter-relationship between acidic pH and polyP accumulation in Bcc isolates. METHODS AND RESULTS: The formation of polyP by one Burkholderia cenocepacia clinical isolate was initially examined at a range of pH values by measuring total intracellular polyP accumulation and phosphate uptake. The pattern of polyP accumulation corresponded with the pattern of phosphate uptake with the maximum for both occurring at pH 5.5. Phosphate uptake and formation of polyP by this isolate was further determined over 48 h at pH 5.5, 6.5 and 7.5; formation of polyP was maximal at pH 5.5 at all time points studied. Sixteen of 17 additional clinical and environmental Bcc isolates examined also exhibited maximum phosphate uptake at pH 5.5. CONCLUSIONS: Both clinical and environmental Bcc isolates, of five genomovars, show enhanced formation of polyP in an acidic environment. Given both the speculated role of polyP in pathogenesis, cell signalling and biofilm formation and the acidic nature of the CF lung, this may be of considerable clinical importance. SIGNIFICANCE AND IMPACT OF THE STUDY: Growth of Bcc in an acidic environment, such as that found in the lungs of CF patients may be influenced in part by polyP accumulation.  相似文献   

10.
Burkholderia cepacia is now recognised as a life-threatening pathogen among several groups of immunocompromised patients. In this context, the proposed large-scale use of these bacteria in agriculture has increased the need for a better understanding of the genetics of the species forming the B. cepacia complex. Until now, little information has been available on the bacteriophages of the B. cepacia complex. Transducing phages, named NS1 and NS2, were derived from the lysogenic B. cepacia strains ATCC 29424 and ATCC 17616. The frequency of transduction per phage particle ranged from 1.0x10(-8) to 7.0x10(-6) depending on the phage and recipient strain used. The host range of NS1 and NS2 differed but in each case included environmental and clinical isolates, and strains belonging to several species and genomovars of the B. cepacia complex. The host range of both phages also included Pseudomonas aeruginosa. Some B. cepacia complex isolates were sensitive to the well-characterised P. aeruginosa transducing phages, B3, F116L and G101. The lytic activity of NS1 and NS2 was inhibited by B. cepacia lipopolysaccharide suggesting that this moiety is a binding site for both phages. The molecular size of the NS1 and NS2 genomes was approximately 48 kb.  相似文献   

11.
12.
Bacteria of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that can cause serious infections in lungs of cystic fibrosis patients. The Bcc comprises at least nine species that have been discriminated by a polyphasic taxonomic approach. In this study, we focused on the gyrB gene, universally distributed among bacteria, as a new target gene to discriminate among the Bcc species. New PCR primers were designed to amplify a gyrB DNA fragment of about 1900 bp from 76 strains representative of all Bcc species. Nucleotide sequences of PCR products were determined and showed more than 400 polymorphic sites with high sequence similarity values from most isolates of the same species. Phylogenetic tree analysis revealed that most of the 76 gyrB sequences grouped, forming clusters, each corresponding to a given Bcc species.  相似文献   

13.
14.
Using probes constructed from Ralstonia solanacearum and Burkholderia pseudomallei, putative type III secretion (TTS) genes were identified in Burkholderia cepacia J2315 (genomovar III). A cosmid clone containing DNA with homology to five TTS genes was sub-cloned and regions were sequenced in order to design oligonucleotides for polymerase chain reaction assays. These indicated that two putative TTS genes (bcscQ and bcscV) were present in all members of the B. cepacia complex with the exception of strains from genomovar I. Southern blot assays confirmed this observation, suggesting that the lack of a TTS gene cluster may define a major difference between B. cepacia genomovar I and other members of the B. cepacia complex, including genomovar III. In contrast to TTS gene clusters in other bacteria, a putative gene homologous to the virB1 gene of Brucella suis was located directly downstream of bcscQR.  相似文献   

15.
The Burkholderia cepacia complex (BCC) comprises a group of bacteria associated with opportunistic infections, especially in cystic fibrosis patients. B. cenocepacia J2315, of the transmissible ET12 lineage, contains a type III secretion (TTS) gene cluster implicated in pathogenicity. PCR and hybridisation assays indicate that the TTS gene cluster is present in all members of the BCC except B. cepacia (formerly genomovar I). The TTS gene clusters of B. cenocepacia J2315 and B. multivorans are similar in organisation but have variable levels of gene identity. Nucleotide sequence data obtained for the equivalent region of the B. cepacia genome indicate the absence of TTS structural genes due to a rearrangement likely to involve more than one step.  相似文献   

16.
洋葱伯克氏菌基因型的鉴定及其在苜蓿模型上的毒力分析   总被引:1,自引:0,他引:1  
张立新  宋江华  谢关林 《微生物学报》2008,48(11):1445-1450
[目的]证实来自我国农业和医院环境中部分洋葱伯克氏菌的基因型并通过苜蓿植物模型探测不同基因型对人体的可能毒力.[方法]采用洋葱伯克氏菌基因型的PCR特异性扩增技术对来源于根围、土壤和医院中的57株洋葱伯克氏菌进行了基因型的鉴定,并利用苜蓿植物模型对这些基因型菌株进行了毒力探测.[结果]获得4种不同的基因型,包括基因型Ⅰ、ⅢA、ⅢB、Ⅴ和Ⅸ.来源于医院的基因型Ⅰ和ⅢA菌株以及根围的基因型ⅢB菌株均对苜蓿幼苗有较强的毒力,其对苜蓿幼苗的平均发病率分别达到69%、68%和55%,与农田环境中基因型Ⅴ和Ⅸ对苜蓿幼苗的发病率相比,表现出显著的差异性.[结论]农田环境中洋葱伯克菌的基因型在苜蓿模型上的毒力差异大,根围的基因型ⅢB菌株对苜蓿幼苗具有强毒力,其毒力程度接近于医院致病基因型ⅢA菌.  相似文献   

17.
AIMS: To study the genotypic identification and characterization of the 119 Burkholderia cepacia complex (Bcc) strains recovered from clinical and environmental sources in Japan and Thailand. METHODS AND RESULTS: Based on the results of analysis by 16S rDNA RFLP generated after digestion with DdeI, the Bcc strains were differentiated into two patterns: pattern 1 (including Burkholderia vietnamiensis) and pattern 2 (including B. cepacia genomovar I, Burkholderia cenocepacia and Burkholderia stabilis). All strains belonged to pattern 2 except for one strain. In the RFLP analysis of the recA gene using HaeIII, strains were separated into eight patterns designated as A, D, E, G, H, I, J and K, of which pattern K was new. Burkholderia cepacia epidemic strain marker (BCESM) encoded by esmR [corrected] and the pyrrolnitrin biosynthetic locus encoded by prnC were present in 22 strains (18%) and 88 strains (74%) from all sources, respectively. All esmR-positive [corrected] strains belonged to B. cenocepacia, whereas most prnC-positive strains belonged to B. cepacia genomovar I. CONCLUSIONS: Strains derived from clinical sources were assigned to B. cepacia genomovar I, B. cenocepacia, B. stabilis and B. vietnamiensis. The majority of Bcc strains from environmental sources (77 of a total 95 strains) belonged to B. cepacia genomovar I, whereas the rest belonged to B. cenocepacia. On the basis of genomovar-specific PCR and prnC RFLP analysis, strains belonging to recA pattern K were identified as B. cepacia genomovar I. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides the genotypic identification of a collection of the Bcc strains from Japan and Thailand. RFLP analysis of the prnC gene promises to be a useful method for differentiating Burkholderia pyrrocinia from B. cepacia genomovar I strains.  相似文献   

18.
A survey of Burkholderia cepacia complex (Bcc) species was conducted in agricultural fields within Hangzhou, China. Out of the 251 bacterial isolates recovered on the selective media from the rhizosphere of rice and maize, 112 of them were assigned to Bcc by PCR assays. The species composition of the Bcc isolates was analyzed by a combination of recA-restriction fragment length polymorphism assays, species-specific PCR tests and recA gene sequencing. The results revealed that the majority belong to B. cepacia, Burkholderia cenocepacia recA lineage IIIB, Burkholderia vietnamiensis and Burkholderia pyrrocinia. Burkholderia cenocepacia and B. vietnamiensis dominated the rhizosphere of maize and rice, respectively, indicating that species composition and abundance of Bcc may vary dramatically in different crop rhizospheres. In addition, one isolate (R456) formed a single discrete cluster within the phylogenetic analysis of the Bcc recA gene, and it may belong to a new genomovar.  相似文献   

19.
A fast screening method was developed to assess the pathogenicity of a diverse collection of environmental and clinical Burkholderia cepacia complex isolates in the nematode Caenorhabditis elegans. The method was validated by comparison with the standard slow-killing assay. We observed that the pathogenicity of B. cepacia complex isolates in C. elegans was strain-dependent but species-independent. The wide range of observed pathogenic phenotypes agrees with the high degree of phenotypic variation among species of the B. cepacia complex and suggests that the taxonomic classification of a given strain within the complex cannot predict pathogenicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号