首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Patterns of genetic variation and covariation can influence the rate and direction of phenotypic evolution. We explored the possibility that the parallel morphological evolution seen in threespine stickleback (Gasterosteus aculeatus) populations colonizing freshwater environments is facilitated by patterns of genetic variation and covariation in the ancestral (marine) population. We estimated the genetic (G) and phenotypic (P) covariance matrices and directions of maximum additive genetic (g(max) ) and phenotypic (p(max) ) covariances of body shape and armour traits. Our results suggest a role for the ancestral G in explaining parallel morphological evolution in freshwater populations. We also found evidence of genetic constraints owing to the lack of variance in the ancestral G. Furthermore, strong genetic covariances and correlations among traits revealed that selective factors responsible for threespine stickleback body shape and armour divergence may be difficult to disentangle. The directions of g(max) and p(max) were correlated, but the correlations were not high enough to imply that phenotypic patterns of trait variation and covariation within populations are very informative of underlying genetic patterns.  相似文献   

2.
3.
Experimental work has provided evidence for extrinsic post-zygotic isolation, a phenomenon unique to ecological speciation. The role that ecological components to reduced hybrid fitness play in promoting speciation and maintaining species integrity in the wild, however, is not as well understood. We addressed this problem by testing for selection against naturally occurring hybrids in two sympatric species pairs of benthic and limnetic threespine sticklebacks (Gasterosteus aculeatus). If post-zygotic isolation is a significant reproductive barrier, the relative frequency of hybrids within a population should decline significantly across the life-cycle. Such a trend in a natural population would give independent support to experimental evidence for extrinsic, rather than intrinsic, post-zygotic isolation in this system. Indeed, tracing mean individual hybridity (genetic intermediateness) across three life-history stages spanning four generations revealed just such a decline. This provides compelling evidence that extrinsic selection plays an important role in maintaining species divergence and supports a role for ecological speciation in sticklebacks.  相似文献   

4.
Evolution of similar phenotypes in independent populations is often taken as evidence of adaptation to the same fitness optimum. However, the genetic architecture of traits might cause evolution to proceed more often toward particular phenotypes, and less often toward others, independently of the adaptive value of the traits. Freshwater populations of Alaskan threespine stickleback have repeatedly evolved the same distinctive opercle shape after divergence from an oceanic ancestor. Here we demonstrate that this pattern of parallel evolution is widespread, distinguishing oceanic and freshwater populations across the Pacific Coast of North America and Iceland. We test whether this parallel evolution reflects genetic bias by estimating the additive genetic variance-covariance matrix (G) of opercle shape in an Alaskan oceanic (putative ancestral) population. We find significant additive genetic variance for opercle shape and that G has the potential to be biasing, because of the existence of regions of phenotypic space with low additive genetic variation. However, evolution did not occur along major eigenvectors of G, rather it occurred repeatedly in the same directions of high evolvability. We conclude that the parallel opercle evolution is most likely due to selection during adaptation to freshwater habitats, rather than due to biasing effects of opercle genetic architecture.  相似文献   

5.
Parallel evolution is characterised by repeated, independent occurrences of similar phenotypes in a given habitat type, in different parts of the species distribution area. We studied body shape and body armour divergence between five marine, four lake, and ten pond populations of nine‐spined sticklebacks [Pungitius pungitius (Linnaeus, 1758)] in Fennoscandia. We hypothesized that marine and lake populations (large water bodies, diverse fish fauna) would be similar, whereas sticklebacks in isolated ponds (small water bodies, simple fish fauna) would be divergent. We found that pond fish had deeper bodies, shorter caudal peduncles, and less body armour (viz. shorter/absent pelvic spines, reduced/absent pelvic girdle, and reduced number of lateral plates) than marine fish. Lake fish were intermediate, but more similar to marine than to pond fish. Results of our common garden experiment concurred with these patterns, suggesting a genetic basis for the observed divergence. We also found large variation among populations within habitat types, indicating that environmental variables other than those related to gross habitat characteristics might also influence nine‐spined stickleback morphology. Apart from suggesting parallel evolution of morphological characteristics of nine‐spined sticklebacks in different habitats, the results also show a number of similarities to the evolution of three‐spined stickleback (Gasterosteus aculeatus Linnaeus, 1758) morphology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 403–416.  相似文献   

6.
Electrophoretic variation of 13 presumptive enzymatic loci was studied in sticklebacks (Gasterosteus aculeatus) at 6 marine (Baltic) and 13 freshwater sites from Poland. Marine samples are significantly more variable (proportion of polymorphic loci, p # 0.38) than freshwater Samles (p # 0.12). Also the mean number of alleles per locus is significantly higher in the marine samples (n # 1.54) than in freshwater samples (n # 1.14). There is however no significant difference in values of mean heterozygosity between marine and freshwater sticklebacks. Some alleles are found in Baltic sticklebacks only, but all these occur in very low frequencies. Genetic distance between samples is low ranging from D = 0.000053 to 0.031410. However D is significant smaller between marine samples than between freshwater Samles. We suggest than this probaily is the result of larger genetic subdivision of freshwater populations. The low genetic divergence of marine and freshwater populations of the stickleback from poland might be expfained by the recent postglacial colonization of this area from a common refugium.  相似文献   

7.
The genetic basis of traits that are under sexual selection and that are involved in recognizing conspecific mates is poorly known, even in systems in which the phenotypic basis of these traits has been well studied. In the present study, we investigate genetic and environmental influences on nuptial colour, which plays important roles in sexual selection and sexual isolation in species pairs of limnetic and benthic threespine sticklebacks ( Gasterosteus aculeatus species complex). Previous work demonstrated that colour differences among species correlate to differences in the ambient light prevalent in their mating habitat. Red fish are found in clear water and black fish in red-shifted habitats. We used a paternal half-sib split-clutch design to investigate the genetic and environmental basis of nuptial colour. We found genetic differences between a red and a black stickleback population in the expression of both red and black nuptial colour. In addition, the light environment influenced colour expression, and genotype by environment interactions were also present. We found evidence for both phenotypic and genetic correlations between our colour traits; some of these correlations are in opposite directions for our red and black populations. These results suggest that both genetic change and phenotypic plasticity underlie the correlation of male colour with light environment.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 663–673.  相似文献   

8.
The role of environment as a selective agent is well-established. Environment might also influence evolution by altering the expression of genetic variation associated with phenotypes under selection. Far less is known about this phenomenon, particularly its contribution to evolution in novel environments. We investigated how environment affected the evolvability of body size in the threespine stickleback (Gasterosteus aculeatus). Gasterosteus aculeatus is well suited to addressing this question due to the rapid evolution of smaller size in the numerous freshwater populations established following the colonization of new freshwater habitats by an oceanic ancestor. The repeated, rapid evolution of size following colonization contrasts with the general observation of low phenotypic variation in oceanic stickleback. We reared an oceanic population of stickleback under high and low salinity conditions, mimicking a key component of the ancestral environment, and freshwater colonization, respectively. There was low genetic variation for body size under high salinity, but this variance increased significantly when fish were reared under low salinity. We therefore conclude that oceanic populations harbor the standing genetic variation necessary for the evolution of body size, but that this variation only becomes available to selection upon colonization of a new habitat.  相似文献   

9.
Levels of differentiation in morphological traits (age at maturity, body length at age, egg mass and body depth) and spawning time were examined in sockeye salmon Oncorhynchus nerka from three geographically proximate but physically distinct creeks in Lake Aleknagik, Alaska. Happy Creek fish had significantly greater values for most measured morphological traits, and Eagle Creek fish spawned significantly later than fish in the other creeks. Phenotypic differentiation between creeks, measured as PST, was then compared with microsatellite marker differentiation between creeks, measured as FST. No correlations were apparent between PST and FST values, and PST values were generally significantly larger than zero (PST= 0·0018–0·31) whereas FST values were not (FST=?0·0004 to 0·0016). The insignificant pair‐wise FST values between creek samples indicated that gene flow occurs between creeks, assuming the creek populations have reached migration–drift equilibrium. However, the strong homing behaviour of sockeye salmon precludes a scenario in which fish from the three creeks constitute a single population that segregates by body size. Rather, significant phenotypic differentiation suggests that strong divergent selection occurs on the phenotypic traits despite the homogenizing effects of gene flow.  相似文献   

10.
The relative importance of natural selection and genetic drift in determining patterns of phenotypic diversity observed in nature is still unclear. The natterjack toad (Bufo calamita) is one of a few amphibian species capable of breeding in saline ponds, even though water salinity represents a considerable stress for them. Results from two common-garden experiments showed a pattern of geographic variation in embryonic salinity tolerance among populations from either fresh or brackish environments, consistent with the hypothesis of local adaptation. Full-sib analysis showed increased variation in survival among sibships within population for all populations as osmotic stress was increased (broad-sense heritability increased as salinity raised). Nevertheless, toads native to the brackish water environment had the highest overall survival under brackish conditions. Levels of population genetic differentiation for salinity tolerance were higher than those of neutral genetic differentiation, the latter obtained through the analysis of eight microsatellite loci. Microsatellite markers also revealed little population differentiation, lack of an isolation-by-distance pattern, and moderate gene flow connecting the populations. Therefore, environmental stress tolerance appears to have evolved in absence of geographic isolation, and consequently we reject the null hypothesis of neutral differentiation.  相似文献   

11.
Sexual selection by mate choice represents a very important selective pressure in many animal species and might have evolutionary impacts beyond exaggeration of secondary sexual traits. Describing the shape and strength of the relationships linking mating success and nonsexual traits in natural conditions represents a challenging step in our understanding of adaptive evolution. We studied the effect of behavioral (nest site choice), immunological (trematode level of infection), genetic diversity (measured by mean d2) and morphological (standard length and pectoral fin size) traits on male mating success in a natural population of threespine sticklebacks Gasterosteaus aculeatus. Male mating success was measured by microsatellite genotyping of embryos used to infer female genotypes. First, we analyzed all territorial males (full analysis) but also considered independently only males with a nonzero mating success (reduced analysis) because some of the males with no eggs could have been part of a later breeding cycle. Multiple linear regressions identified a significant negative effect of parasite load in the full analysis, whereas no linear effect was found in the reduced analysis. The quadratic analyses revealed that nest location and parasite load were significantly related to mating success by positive (concave selection) and negative (convex selection) quadratic coefficients respectively, resulting in a saddle-shaped fitness surface. Moreover, there were significant interactions between nest location, mean d2 and parasite load in the reduced analysis. The subsequent canonical rotation of the matrix of quadratic and cross-product terms identified two major axes of the response surface: a vector representing mostly nest site choice and a vector representing parasite load. These results imply that there exists more than one way for a male threespine stickleback to maximize its mating success and that such nonlinear relationships between male mating success induced by female mate choice and male characteristics might have been overlooked in many studies.  相似文献   

12.
The distribution of three main lateral plate morphs of the three–spined stickleback, Gasterosteus aculeatus , in the Polish zone of the Baltic Sea and inland waters is surveyed. Most sites are characterized by predominance of the completely plated morph, although it is only in the Vistula River drainage basin where monomorphic complete populations prevail. Polymorphic populations with a high proportion of the non–complete morphs are found in Puck Bay (the Baltic) and in south–west Poland, Possible causes of this pattern are discussed.  相似文献   

13.
Stochastic effects from demographic processes and selection are expected to shape the distribution of genetic variation in spatially heterogeneous environments. As the amount of genetic variation is central for long‐term persistence of populations, understanding how these processes affect variation over large‐scale geographical gradients is pivotal. We investigated the distribution of neutral and putatively adaptive genetic variation, and reconstructed demographic history in the moor frog (Rana arvalis) using 136 individuals from 15 populations along a 1,700‐km latitudinal gradient from northern Germany to northern Sweden. Using double digest restriction‐site associated DNA sequencing we obtained 27,590 single nucleotide polymorphisms (SNPs), and identified differentiation outliers and SNPs associated with growing season length. The populations grouped into a southern and a northern cluster, representing two phylogeographical lineages from different post‐glacial colonization routes. Hybrid index estimation and demographic model selection showed strong support for a southern and northern lineage and evidence of gene flow between regions located on each side of a contact zone. However, patterns of past gene flow over the contact zone differed between neutral and putatively adaptive SNPs. While neutral nucleotide diversity was higher along the southern than the northern part of the gradient, nucleotide diversity in differentiation outliers showed the opposite pattern, suggesting differences in the relative strength of selection and drift along the gradient. Variation associated with growing season length decreased with latitude along the southern part of the gradient, but not along the northern part where variation was lower, suggesting stronger climate‐mediated selection in the north. Outlier SNPs included loci involved in immunity and developmental processes.  相似文献   

14.
The comparison of the degree of differentiation in neutral marker loci and genes coding quantitative traits with standardized and equivalent measures of genetic differentiation (FST and QST, respectively) can provide insights into two important but seldom explored questions in evolutionary genetics: (i) what is the relative importance of random genetic drift and directional natural selection as causes of population differentiation in quantitative traits, and (ii) does the degree of divergence in neutral marker loci predict the degree of divergence in genes coding quantitative traits? Examination of data from 18 independent studies of plants and animals using both standard statistical and meta‐analytical methods revealed a number of interesting points. First, the degree of differentiation in quantitative traits (QST) typically exceeds that observed in neutral marker genes (FST), suggesting a prominent role for natural selection in accounting for patterns of quantitative trait differentiation among contemporary populations. Second, the FSTQST difference is more pronounced for allozyme markers and morphological traits, than for other kinds of molecular markers and life‐history traits. Third, very few studies reveal situations were QST < FST, suggesting that selection pressures, and hence optimal phenotypes, in different populations of the same species are unlikely to be often similar. Fourth, there is a strong correlation between QST and FST indices across the different studies for allozyme (r=0.81), microsatellite (r=0.87) and combined (r=0.75) marker data, suggesting that the degree of genetic differentiation in neutral marker loci is closely predictive of the degree of differentiation in loci coding quantitative traits. However, these interpretations are subject to a number of assumptions about the data and methods used to derive the estimates of population differentiation in the two sets of traits.  相似文献   

15.
The additive genetic variance-covariance matrix (G) is a concept central to discussions about evolutionary change over time in a suite of traits. However, at the moment we do not know how fast G itself changes as a consequence of selection or how sensitive it is to environmental influences. We investigated possible evolutionary divergence and environmental influences on G using data from a factorial common-garden experiment where common frog (Rana temporaria) tadpoles from two divergent populations were exposed to three different environmental treatments. G-matrices were estimated using an animal model approach applied to data from a NCII breeding design. Matrix comparisons using both Flury and multivariate analysis of variance methods revealed significant differences in G matrices both between populations and between treatments within populations, the former being generally larger than the latter. Comparison of levels of population differentiation in trait means using Q(ST) indices with that observed in microsatellite markers (F(ST)) revealed that the former values generally exceeded the neutral expectation set by F(ST). Hence, the results suggest that intraspecific divergence in G matrix structure has occurred mainly due to natural selection.  相似文献   

16.
Examining differences in colour plasticity between closely‐related species in relation to the heterogeneity of background colours found in their respective habitats may offer important insight into how cryptic colour change evolves in natural populations. In the present study, we examined whether nonbreeding dorsal body coloration has diverged between sympatric species of stickleback along with changes in habitat‐specific background colours. The small, limnetic species primarily occupies the pelagic zone and the large, benthic species inhabits the littoral zone. We placed benthic and limnetic sticklebacks against extremes of habitat background colours and measured their degree of background matching and colour plasticity. Benthics matched the littoral background colour more closely than did the limnetics, although there was no difference between species in their resemblance to the pelagic background colour. Benthics were able to resemble both background colours by exhibiting greater directional colour plasticity in their dorsal body coloration than limnetics, which may be an adaptive response to the greater spectral heterogeneity of the littoral zone. The present study highlights how habitat‐specific spectral characteristics may shape cryptic coloration differences between stickleback species. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 902–914.  相似文献   

17.
Adaptive radiations are a major source of evolutionary diversity in nature, and understanding how they originate and how organisms diversify during the early stages of adaptive radiation is a major problem in evolutionary biology. The relationship between habitat type and body shape variation was investigated in a postglacial radiation of threespine stickleback in the upper Fish Creek drainage of Cook Inlet, Alaska. Although small, the upper Fish Creek drainage includes ecologically diverse lakes and streams in close proximity to one another that harbour abundant stickleback. Specimens from ancestral anadromous and derived resident freshwater populations differed substantially and could be distinguished by body shape alone, suggesting that the initial stages of adaptation contribute disproportionately to evolutionary divergence. Body shape divergence among resident freshwater populations was also considerable, and phenotypic distances among samples from freshwater populations were associated with habitat type but not geographical distance. As expected, stream stickleback from slow-moving, structurally complex environments tended to have the deepest bodies, stickleback from lakes with a mostly benthic habitat were similar but less extreme, and stickleback from lakes with a mostly limnetic habitat were the most shallow-bodied, elongate fish. Beyond adapting rapidly to conditions in freshwater environments, stickleback can diversify rapidly over small geographical scales in freshwater systems despite opportunities for gene flow. This study highlights the importance of ecological heterogeneity over small geographical scales for evolutionary diversification during the early stages of adaptive radiation, and lays the foundation for future research on this ecologically diverse, postglacial system.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 139–151.  相似文献   

18.
A change in anti–predator strategy from hiding to grouping outside a refuge was observed in large three–spined sticklebacks. No such change in strategy was seen in small fish. The body–length dependence of this strategy change is discussed in the context of metabolic constraints.  相似文献   

19.
Comparative studies of quantitative genetic and neutral marker differentiation have provided means for assessing the relative roles of natural selection and random genetic drift in explaining among-population divergence. This information can be useful for our fundamental understanding of population differentiation, as well as for identifying management units in conservation biology. Here, we provide comprehensive review and meta-analysis of the empirical studies that have compared quantitative genetic (Q(ST)) and neutral marker (F(ST)) differentiation among natural populations. Our analyses confirm the conclusion from previous reviews - based on ca. 100% more data - that the Q(ST) values are on average higher than F(ST) values [mean difference 0.12 (SD 0.27)] suggesting a predominant role for natural selection as a cause of differentiation in quantitative traits. However, although the influence of trait (life history, morphological and behavioural) and marker type (e.g. microsatellites and allozymes) on the variance of the difference between Q(ST) and F(ST) is small, there is much heterogeneity in the data attributable to variation between specific studies and traits. The latter is understandable as there is no reason to expect that natural selection would be acting in similar fashion on all populations and traits (except for fitness itself). We also found evidence to suggest that Q(ST) and F(ST) values across studies are positively correlated, but the significance of this finding remains unclear. We discuss these results in the context of utility of the Q(ST)-F(ST) comparisons as a tool for inferring natural selection, as well as associated methodological and interpretational problems involved with individual and meta-analytic studies.  相似文献   

20.
We investigated the interplay between natural selection and gene flow in the adaptive divergence of threespine stickleback (Gasterosteus aculeatus) that reside parapatrically in lakes and streams. Within the Misty Lake system (Vancouver Island, British Columbia), stickleback from the inlet stream (flowing into the lake) have fewer gill rakers and deeper bodies than stickleback from the lake--differences thought to facilitate foraging (benthic macroinvertebrates in the stream vs. zooplankton in the open water of the lake). Common-garden experiments demonstrated that these differences have a genetic basis. Reciprocal transplant enclosure experiments showed that lake and inlet stickleback grow best in their home environments (although differences were subtle and often not significant). Release-recapture experiments in the inlet showed that lake fish are less well-suited than inlet fish for life in the stream (higher mortality or emigration in lake fish). Morphological divergence in the wild and under common rearing was greater between the lake and the inlet than between the lake and the outlet. Genetic divergence (mitochondrial DNA and microsatellites) was greatest between the lake and the upper inlet (1.8 km upstream from the lake), intermediate between the lake and the lower inlet (0.9 km upstream), and least between the lake and the outlet stream (1.2 km downstream). Relative levels of gene flow estimated from genetic data showed the inverse pattern. The negative association between morphological divergence and gene flow is consistent with the expectation that gene flow can constrain adaptation. Estimated absolute levels of gene flow also implied a constraint on adaptation in the outlet but not the inlet. Our results suggest that natural selection promotes the adaptive divergence of lake and stream stickleback. but that the magnitude of divergence can be constrained by gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号