首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aminoacyl-tRNA synthetases (AARSs) are at the center of the question of the origin of life. They constitute a family of enzymes integrating the two levels of cellular organization: nucleic acids and proteins. AARSs arose early in evolution and are believed to be a group of ancient proteins. They are responsible for attaching amino acid residues to their cognate tRNA molecules, which is the first step in the protein synthesis. The role they play in a living cell is essential for the precise deciphering of the genetic code. The analysis of AARSs evolutionary history was not possible for a long time due to a lack of a sufficiently large number of their amino acid sequences. The emerging picture of synthetases' evolution is a result of recent achievements in genomics [Woese,C., Olsen,G.J., Ibba,M. and S?ll,D. (2000) Microbiol. Mol. Biol. Rev., 64, 202-236]. In this paper we present a short introduction to the AARSs database. The updated database contains 1047 AARS primary structures from archaebacteria, eubacteria, mitochondria, chloroplasts and eukaryotic cells. It is the compilation of amino acid sequences of all AARSs known to date, which are available as separate entries via the WWW at http://biobases.ibch.poznan.pl/aars/.  相似文献   

2.
Crystallographic studies of a number of aminoacyl-tRNA synthetases and their complexes with ATP, amino acid and cognate tRNA are leading to an increasingly detailed picture of how these sophisticated enzymes function. Within the two distinct structural classes of ten synthetases, many common features are apparent, although evolution has led to many interesting idiosyncrasies in certain enzymes. Recent advances, specially concerning class II enzymes, have increased out knowledge of both the role of electrophiles in the mechanism of amino acid activation and cross-subunit tRNA recognition and help solve the evolutionary puzzles that have emerged from the extension of the aminoacyl-tRNA synthetase database to include Archae  相似文献   

3.
4.
Numerous aminoacyl-tRNA synthetase sequences have been aligned by computer and phylogenetic trees constructed from them for the two classes of these enzymes. Branching orders based on a consensus of these trees have been proposed for the two groups. Although the order of appearance can be rationalized to fit many different scenarios having to do with the genetic code, the invention of a system for translating nucleic acid sequences into polypeptide chains must have predated the existence of these proteins. In the past, a variety of schemes has been proposed for matching amino acids and tRNAs. Most of these have invoked direct recognition of one by the other, whether or not the anticodon was involved. Often ignored is the possibility of a nonprotein (presumably RNA) matchmaker for bringing the two into conjunction. If such had been the case, then the contemporary aminoacyl-tRNA synthetases could have entered the system gradually, each specific type replacing its matchmaking RNA counterpart in turn. A simple displacement scheme of this sort accommodates the existence of two different families of these enzymes, the second being introduced well before the first had undergone sufficient genetic duplications to specify the full gamut of amino acids. Such a scheme is also consistent with similar amino acids often, but not always, being the substrates of enzymes with the most similar amino acid sequences.Based on a presentation made at a workshop—Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: R.F. Doolittle  相似文献   

5.
This paper presents the updated version (Y2K) of the database of ribosomal 5S ribonucleic acids (5S rRNA) and their genes (5S rDNA), http://rose.man/poznan.pl/5SData/index.html. This edition of the database contains 1985primary structures of 5S rRNA and 5S rDNA. They include 60 archaebacterial, 470 eubacterial, 63 plastid, nine mitochondrial and 1383 eukaryotic sequences. The nucleotide sequences of the 5S rRNAs or 5S rDNAs are divided according to the taxonomic position of the source organisms.  相似文献   

6.
7.
8.
The aim of this review is to summarize the data obtained in the author's laboratory during the last decade. The main objects of these investigations were mammalian aminoacyl-tRNA synthetases, mainly bovine tryptophanyl-tRNA synthetase (EC 6.1.1.2). The data are discussed and compared with those described in literature. In the course of these studies it turned out that some properties of mammalian aminoacyl-tRNA synthetases for instance, nuclear location of some of the synthetases, presence of extra-domain in bovine tryptophanyl-tRNA synthetase capable of catalyzing hydrolysis of ATP and GTP in the absence of Zn2+ ions and normal aminoacylation capacity, ability to bind to one of the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, formation of aminoacylated and pyrophosphorylated forms of tryptophanyl-tRNA synthetase etc., seem to be unrelated to the main function of the synthetases, catalysis of aminoacyl-tRNA formation, and, therefore, might be classified as noncanonical ones. Comparison of prokaryotic and eukaryotic aminoacyl-tRNA synthetases indicates the multipotential nature of the latter.  相似文献   

9.
Aminoacylation of tRNAs, catalyzed by 20 aminoacyl-tRNA synthetases, is responsible for establishing the genetic code. The enzymes are divided into two classes on the basis of the architectures of their active sites. Members of the two classes also differ in that they bind opposite sides of the tRNA acceptor stem. Importantly, specific pairs of synthetases--one from each class--can be docked simultaneously onto the acceptor stem. This article relates these specific pairings to the organization of the table of codons that defines the universal genetic code.  相似文献   

10.
11.
A simple method for the assay of aminoacyl-tRNA synthetases(AARS) activity was modified for application in planktonic crustaceansas an index of somatic growth. The cladoceran Daphnia magnawas cultured in the laboratory and its AARS activity measuredwithout substrate addition. The relationship between the enzymeactivities of animals of similar age and individual biomassgrowing at different rates was tested. A significant relationshipwas found between AARS activity and somatic growth in termsof both protein and dry weight.  相似文献   

12.
13.
Smooth muscle cell energetics of taenia caeci during relaxation, activity and maximal contraction were investigated using 31P-NMR. In relaxed muscle obtained in calcium-free medium, [ATP], [phosphocreatine] and [sugar phosphate] were 4.4 mM, 7.7 mM and 2.8 mM, respectively. There was only a small difference in the energetics of spontaneously active and maximally contracted muscles, but under both conditions substantial changes occurred as compared with relaxed muscles. The internal pH in relaxed muscle was found to be 7.05, which acidified to 6.5 during contraction. The level of sugar phosphates was found to be not a limiting factor in energetics.  相似文献   

14.
Aminoacyl-tRNA synthetases attach amino acids to the 3' termini of cognate tRNAs to establish the specificity of protein synthesis. A recent Asilomar conference (California, January 13-18, 2002) discussed new research into the structure-function relationship of these crucial enzymes, as well as a multitude of novel functions, including participation in amino acid biosynthesis, cell cycle control, RNA splicing, and export of tRNAs from nucleus to cytoplasm in eukaryotic cells. Together with the discovery of their role in the cellular synthesis of proteins to incorporate selenocysteine and pyrrolysine, these diverse functions of aminoacyl-tRNA synthetases underscore the flexibility and adaptability of these ancient enzymes and stimulate the development of new concepts and methods for expanding the genetic code.  相似文献   

15.
Aminoacyl-tRNA synthetases: a new image for a classical family.   总被引:4,自引:0,他引:4  
  相似文献   

16.
Thermostable aminoacyl-tRNA synthetases specific to Val, Ile, Met and Glu were purified from an extreme thermophile, Thermus thermophilus HB8. As for the subunit compositions and molecular weights, these four aminoacyl-tRNA synthetases are similar to the corresponding enzymes from E. coli and B. stearothermophilus. Val-tRNA, Ile-tRNA and Met-tRNA synthetases from T. thermophilus have two tightly bound zinc ions, whereas Glu-tRNA synthetase does not. The amino acid compositions and secondary structures of Val-tRNA, Ile-tRNA and Met-tRNA synthetases are quite similar to one another. The conformational transition involving the anticodon of E. coli tRNAGlu as complexed with Glu-tRNA synthetase from T. thermophilus is necessary for the aminoacylation activity.  相似文献   

17.
The emergence of multidrug-resistant strains of pathogenic microorganisms and the slow progress in new antibiotic development has led in recent years to a resurgence of infectious diseases that threaten the well-being of humans. The result of many microorganisms becoming immune to major antibiotics means that fighting off infection by these pathogens is more difficult. The best strategy to get around drug resistance is to discover new drug targets, taking advantage of the abundant information that was recently obtained from genomic and proteomic research, and explore them for drug development. In this regard, aminoacyl-tRNA synthetases (ARSs) provide a promising platform to develop novel antibiotics that show no cross-resistance to other classical antibiotics. During the last few years there has been a comprehensive attempt to find the compounds that can specifically target ARSs and inhibit bacterial growth. In this review, the current status in the development of ARS inhibitors will be briefly summarized, based on their chemical structures and working mechanisms.  相似文献   

18.
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., “moonlighting”, functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.  相似文献   

19.
Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process.   总被引:14,自引:0,他引:14  
The aminoacyl-tRNA synthetases (AARSs) and their relationship to the genetic code are examined from the evolutionary perspective. Despite a loose correlation between codon assignments and AARS evolutionary relationships, the code is far too highly structured to have been ordered merely through the evolutionary wanderings of these enzymes. Nevertheless, the AARSs are very informative about the evolutionary process. Examination of the phylogenetic trees for each of the AARSs reveals the following. (i) Their evolutionary relationships mostly conform to established organismal phylogeny: a strong distinction exists between bacterial- and archaeal-type AARSs. (ii) Although the evolutionary profiles of the individual AARSs might be expected to be similar in general respects, they are not. It is argued that these differences in profiles reflect the stages in the evolutionary process when the taxonomic distributions of the individual AARSs became fixed, not the nature of the individual enzymes. (iii) Horizontal transfer of AARS genes between Bacteria and Archaea is asymmetric: transfer of archaeal AARSs to the Bacteria is more prevalent than the reverse, which is seen only for the "gemini group. " (iv) The most far-ranging transfers of AARS genes have tended to occur in the distant evolutionary past, before or during formation of the primary organismal domains. These findings are also used to refine the theory that at the evolutionary stage represented by the root of the universal phylogenetic tree, cells were far more primitive than their modern counterparts and thus exchanged genetic material in far less restricted ways, in effect evolving in a communal sense.  相似文献   

20.
Summary Kinetic studies have been performed on the family of aminoacyl synthetases from calf liver. All assays were based on the esterification of amino acids to tRNA. Optimized reaction conditions for each synthetase are reported. Most of the synthetases show hyperbolic kinetics with respect to both amino acid and tRNA concentration, however a few show sigmoidal kinetics with respect to one substrate. Arginine, methionine and proline synthetases show sigmoidal kinetics with respect to mixed tRNA solutions and have Hill coefficients of 1.30, 1.10 and 1.20 respectively. Alanine and isoleucine synthetases show sigmoidal kinetics with respect to amino acid concentration and have Hill coefficients of 1.21 and 1.40 respectively.Supported by a Grant From the National Research Council of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号