首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, europium‐doped strontium aluminate (SrAl2O4:Eu2+) phosphors were synthesized using a combustion method with urea as a fuel at 600°C. The phase structure, particle size, surface morphology and elemental analysis were studied using X‐ray diffractometry (XRD), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectra. The EDX and FTIR spectra confirm the elements present in the SrAl2O4:Eu2+ phosphor. The optical properties of SrAl2O4:Eu2+ phosphors were investigated by photoluminescence (PL) and mechanoluminescence (ML). The excitation and emission spectra showed a broad band with peaks at 337 and 515 nm, respectively. The ML intensities of SrAl2O4:Eu2+ phosphor increased proportionally with the increase in the height of the mechanical load, which suggests that this phosphor could be used in stress sensors. The CIE colour chromaticity diagram and ML spectra confirm that the SrAl2O4:Eu2+ phosphor emitted green coloured light. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Piyush Jha 《Luminescence》2016,31(7):1302-1305
This paper reports the luminescence behavior of Sr0.097Al2O4:Eu0.01,Dy0.02 phosphors under UV‐irradiation. The effect of UV‐irradiation on afterglow (AG), thermoluminescence (TL) and mechanoluminescence (ML) of Sr0.097Al2O4:Eu0.01,Dy0.02 phosphors is investigated. The space group of Sr0.097Al2O4:Eu0.01,Dy0.02 phosphors is monoclinic P21. The prepared phosphors exhibit a long AG, intense TL and ML. It is found that the AG, ML intensity and TL increase with increasing duration of irradiation time. The ML intensity decreases with successive impact of the load onto the phosphors, whereby the diminished ML intensity can be recovered by UV‐irradiation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A blue CaMgSi2O6:Eu2+ phosphor was prepared by the solid‐state reaction method and the phosphor characterized in terms of crystal structure, particle size, photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties using X‐ray diffraction (XRD), transmission electron microscopy (TEM), PL spectroscopy, TLD reader and ML impact technique. The XRD result shows that phosphor is formed in a single phase and has a monoclinic structure with the space group C2/c. Furthermore, the PL excitation spectra of Eu2+‐doped CaMgSi2O6 phosphor showed a strong band peak at 356 nm and the PL emission spectrum has a peak at 450 nm. The depths and frequency factors of trap centers were calculated using the TL glow curve by deconvolution method in which the trap depths were found to be 0.48 and 0.61 eV. The formation of CaMgSi2O6:Eu2+ phosphor was confirmed by Fourier transform infrared spectroscopy. The ML intensity increased linearly with the impact velocity of the piston used to deform the phosphor. It was shown that the local piezoelectricity‐induced electron bombardment model is responsible for the ML emission. Finally, the optical properties of CaMgSi2O6:Eu2+ phosphors are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The Eu2+‐induced enhancement of defect luminescence of ZnS was studied in this work. While photoluminescence (PL) spectra exhibited 460 nm and 520 nm emissions in both ZnS and ZnS:Eu nanophosphors, different excitation characteristics were shown in their photoluminescence excitation (PLE) spectra. In ZnS nanophosphors, there was no excitation signal in the PLE spectra at the excitation wavelength λex > 337 nm (the bandgap energy 3.68 eV of ZnS); while in ZnS:Eu nanophosphors, two excitation bands appeared that were centered at 365 nm and 410 nm. Compared with ZnS nanophosphors, the 520 nm emission in the PL spectra was relatively enhanced in ZnS:Eu nanophosphors and, furthermore, in ZnS:Eu nanophosphors the 460 nm and 520 nm emissions increased more than 10 times in intensity. The reasons for these differences were analyzed. It is believed that the absorption of Eu2+ intra‐ion transition and subsequent energy transfer to sulfur vacancy, led to the relative enhancement of the 520 nm emission in ZnS:Eu nanophosphors. In addition, more importantly, Eu2+ acceptor‐bound excitons are formed in ZnS:Eu nanophosphors and their excited levels serve as the intermediate state of electronic relaxation, which decreases non‐radiative electronic relaxation and thus increases the intensity of the 460 nm and 520 nm emission dramatically. In summary, the results in this work indicate a new mechanism for the enhancement of defect luminescence of ZnS in Eu2+‐doped ZnS nanophosphors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu2+‐doped and Eu2+,Dy3+‐co‐doped Ba2MgSi2O7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid‐state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X‐ray diffraction (XRD), transmission electron microscopy (TEM) and energy‐dispersive X‐ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba2MgSi2O7:Eu2+ showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba2MgSi2O7:Eu2+Dy3+ showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f6 5d1 to 4f7 transition of Eu2+. TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu2+ doping in Ba2MgSi2O7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy3+ ions were co‐doped in Ba2MgSi2O7:Eu2+ and maximum TL intensity was observed for 2 mol% of Dy3+. TL emission spectra of Ba1.95MgSi2O7:0.05Eu2+ and Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co‐doping. The trap depths were calculated to be 0.54 eV for Ba1.95MgSi2O7:0.05Eu2+ and 0.54 eV and 0.75 eV for Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors. It was observed that co‐doping with small amounts of Dy3+ enhanced the thermoluminescence properties of Ba2MgSi2O7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The following parts of the abstract have been edited for consistency. '4f65d1' has been corrected to '4f6 5d1', '4f7' has been corrected to '4f7', 'Ba1.95' has been corrected to 'Ba1.95' and 'Ba1.93' has been corrected to 'Ba1.93' respectively.]  相似文献   

6.
Sr4Al2O7:Eu3+ and Sr4Al2O7:Dy3+ phosphors with alkali metal substitution were prepared using a sol–gel method. The effects of a charge compensator R on the structure and luminescence of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors were investigated in detail. Upon heating to 1400°C, the structure of the prepared samples was that of the standard phase of Sr4Al2O7. Under ultraviolet excitation, all Sr4Al2O7:Eu3+,R+ samples exhibited several narrow emission peaks ranging from 550 to 700 nm due to the 4f → 4f transition of Eu3+ ions. All Sr4Al2O7:Dy3+,R+ phosphors showed two emission peaks at 492 and 582 nm, due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The luminescence intensity of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors improved markedly upon the addition of charge compensators, promoting their application in white light‐emitting diodes with a near‐ultraviolet chip.  相似文献   

7.
Calcium aluminate phosphors activated by Dy3+ have been prepared by a combustion method at a temperature of 600°C. Photoluminescence (PL) and thermoluminescence (TL) properties of gamma‐irradiated Dy‐doped calcium aluminate were investigated. The PL spectrum shows a broad peak around 488 nm and 573 nm, under 347 nm excitation. Thermoluminescence studies were performed for different concentrations of Dy. Optimum intensity of photoluminescence was found for 0.02 mol% concentration of Dy. It was found that initially the peak TL intensity increases with increasing concentration of Dy in the CaAl2O4 host, attains a maximum value for 0.05 mol% concentration and decreases with further increase in the doping concentration due to concentration quenching. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The luminescent properties of europium (Eu)‐ and dysprosium (Dy)‐co‐doped K3Ca2(SO4)3Cl halosulfate phosphors were analyzed. This paper reports the photoluminescence (PL) properties of K3Ca2(SO4)3Cl microphosphor doped with Eu and Dy and synthesized using a cost‐effective wet chemical method. The phosphors were characterized by X‐ray diffraction and scanning electron microscopy. The CIE coordinates were calculated to display the color of the phosphor. PL emission of the prepared samples show peaks at 484 nm (blue), 575 nm (yellow), 594 nm (orange) and 617 nm (red). The emission color of the Eu,Dy‐co‐doped K3Ca2(SO4)3Cl halophosphor depends on the doping concentration and excitation wavelength. The addition of Eu in K3Ca2(SO4)3Cl:Dy greatly enhances the intensity of the blue and yellow peaks, which corresponds to the 4 F9/26H15/2 and 4 F9/26H13/2 transitions of Dy3+ ions (under 351 nm excitation). The Eu3+/Dy3+ co‐doping also produces white light emission for 1 mol% of Eu3+, 1 mol% of Dy3+ in the K3Ca2(SO4)3Cl lattice under 396 nm excitation, for which the calculated chromaticity coordinates are (0.35, 0.31). Thus, K3Ca2(SO4)3Cl co‐doped with Eu/Dy is a suitable candidate for NUV based white light‐emitting phosphors technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors.  相似文献   

10.
Eu doped ZnAl2O4 phosphors were synthesized by the solution combustion technique using carbohydrazide as a fuel. Mechanoluminescence (ML) was excited impulsively by dropping a piston of 0.7 kg onto the phosphors. Two distinct peaks were observed in the ML glow curve of the γ‐ray irradiated ZnAl2O4:Eu phosphors. Dependence of ML on various parameters as impact velocity of the piston dropped on to it, mass of the sample, gamma ray doses given to the sample and ML spectra have been studied. ML emission spectrum showed the characteristic emission of Eu3+ ion in this system. ML is observed to be optimum for the sample having 0.2 mol% of Eu in the ZnAl2O4 phosphor. XRD result confirms formation of the phosphors. SEM characterization shows its surface morphology. This novel phosphor may be a potential candidate for dosimetric use due to its linear dose response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Photoluminescence (PL) of thallium co‐doped with KCl0.5Br0.5:Eu2+ powder phosphors display emission bands at 320 and 370 nm attributable to centres involving Tl+ ions in addition to characteristic Eu2+ emission around 420 nm. Additional PL excitation and emission bandS observed around 260 and 380 nm, respectively, were observed in the double‐doped KCl0.5Br0.5:Eu2+, Tl+ powder phosphors and are attributed to complex centres involving Tl+ and Eu2+ ions. The enhancement observed in the intensity of Eu2+ emission around 420 nm with the addition of TlBr in KCl0.5Br0.5:Eu2+ powder phosphors is attributed to the energy transfer from Tl+ → Eu2+ ions. Photostimulated luminescence (PSL) studies of γ‐irradiated KCl0.5Br0.5:Eu2+, Tl+ mixed phosphors are reported and a tentative PSL mechanism in the phosphors has been suggested. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Thermoluminescence (TL) measurements were carried out on europium (Eu) doped magnesium pyrophosphate (Mg2P2O7) nanopowders using gamma irradiation in the dose range of 0.1 to 3 kGy. The powder samples were successfully synthesized by chemical co‐precipitation synthesis route. The formation and crystallinity of the compound was confirmed by powder X‐ray diffraction (PXRD) pattern. The estimated particle size was found to be in nanometer scale by using Debye Scherer's formula. A scanning electron microscopy (SEM) study was carried out for the morphological characteristics of as synthesized Mg2P2O7:Eu phosphor. Photoluminescence (PL) study was carried out to confirm the presence of the rare‐earth ion and its valence state. The TL analysis of synthesized samples were performed after the irradiation of Mg2P2O7:Eu with cobalt‐60 (60Co) gamma rays. The high and low intensity peaks of TL glow curve appeared at around 400 K, 450 K, 500 K and 596 K respectively. The appreciable shift in peak positions has been observed for different concentrations of Eu ion. The trapping parameters, namely activation energy (E), order of kinetics (b) and frequency factor (s) have been determined using thermal cleaning process, peak shape (Chen's) method and glow curve deconvolution (GCD) functions.  相似文献   

13.
Red and green rare-earth ion (RE3+) (RE = Eu, Tb):MgLa2V2O9 micro-powder phosphors were produced utilizing a standard solid-state chemical process. The X-ray diffraction examination performed on the phosphors showed that they were crystalline and had a monoclinic structure. The particles grouped together, as shown in the scanning electron microscopy (SEM) images. Powder phosphors were examined using a variety of spectroscopic techniques, including photoluminescence (PL), Fourier-transform infrared, and energy dispersive X-ray spectroscopy. Brilliant red emission at 615 nm (5D0 → 7F2) having an excitation wavelength (λexci) of 396 nm (7F0 → 5L6) and green emission at 545 nm (5D4 → 7F5) having an λexci = 316 nm (5D4 → 7F2) have both been seen in the emission spectra of Tb3+:MgLa2V2O9 nano-phosphors. The emission mechanism that is raised in Eu3+:MgLa2V2O9 and Tb3+:MgLa2V2O9 powder phosphors has been explained in an energy level diagram.  相似文献   

14.
Luminescent materials used in flat panel displays, compact fluorescent lamps, and light-emitting diodes require high purity, uniform particle size, clean surfaces, spherical shape, and dense morphology to ensure long-term stability. Y2O3:Eu3+ is a widely studied red phosphor known for its characteristic photoluminescence (PL) emission at 613 nm with near-UV excitation at 392 nm. Many methods have been explored to synthesize Y2O3:Eu3+ nanoparticles with exceptional purity, consistent phases, and uniform particle sizes. The aim is to synthesize particles with pristine surfaces, spherical shape, and compact morphology. This study focuses on the low-temperature synthesis and PL investigation of Y2–xO3:Eux3+ nanophosphors using combustion with thioglycerol as fuel. The results are compared with Y2–xO3:Eux3+ red nanophosphors synthesized using wet chemical and nitrate combustion methods. The PL characteristics of the Y2–xO3:Eux3+ nanophosphors were analyzed using PL emission spectroscopy, X-ray diffraction, and scanning electron microscopy. These findings highlight the advantageous properties of the synthesized nanophosphors, such as their suitability for solid-state lighting applications in the lamp industry as highly efficient red phosphors. The combination of high purity, uniform particle size, clean surfaces, spherical shape, and dense morphology contributes to their potential for long-term stability and reliable performance in lighting devices.  相似文献   

15.
BaGd2‐xO4:xEu3+ and Ba1‐yGd1.79‐2yEu0.21Na3yO4 phosphors were synthesized at 1300°C in air by conventional solid‐state reaction method. Phosphors were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE) spectra, photoluminescence (PL) spectra and thermoluminescence (TL) spectra. Optimal PL intensity for BaGd2‐xO4:xEu3+ and Ba1‐yGd1.79‐2yEu0.21Na3yO4 phosphors at 276 nm excitation were found to be x = 0.24 and y = 0.125, respectively. The PL intensity of Eu3+ emission could only be enhanced by 1.3 times with incorporation of Na+ into the BaGd2O4 host. Enhanced luminescence was attributed to the flux effect of Na+ ions. However, when BaGd2O4:Eu3+ phosphors were codoped with Na+ ions, the induced defects confirmed by TL spectra impaired the emission intensity of Eu3+ ions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The temperature‐dependent photoluminescences of Y2O3:Eu (6% Eu), Y2O3:Tb (4% Tb) and Y2O3:Tm (1% Tm) were investigated for high‐temperature phosphor thermometry. Two different phases, the monoclinic phase and cubic phase, were considered because the fluorescence spectra vary with the phase. To employ the intensity ratio method, we investigated their photoluminescence spectra under the excitation light of an Hg–Xe lamp as the temperature was elevated from room temperature to more than 1200 K. As a result, it was confirmed that the luminescence intensity of all of the phosphors varied with elevating temperature, i.e. thermal quenching, with the variations depending on the type of rare earth impurity and their phases. The results indicate that Y2O3:Eu phosphors are applicable to the intensity ratio method because they show appropriate variations in the intensity ratio of two emission lines, and they also have strong and sharp peak intensities without excessive optical noise or black body radiation over a wide range of temperatures. The intensity ratios for Y2O3:Tb provide such small variations with temperature that the temperature resolution is low, despite the strong emission intensities. As for Y2O3:Tm, the intensity ratios also have a low temperature resolution and their emission intensities are weak. Therefore, Y2O3:Tb and Y2O3:Tm are not appropriate for the intensity ratio method for phosphor thermometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Mathematical approaches made for both the charged dislocation model and piezoelectrically induced electron bombardment model of fracto‐mechanoluminescence (FML), the luminescence induced by fracture of solids, in ZnS:Mn phosphor indicate that the piezoelectrically induced electron bombardment model provides a dominating process for the FML of ZnS phosphors. The concentration of 3000 ppm Mn2+ is optimal for ML intensity of ZnS:Mn phosphor. The decay time of ML gives the relaxation time of the piston used to deform the sample and the time tm of maximum of ML is controlled by both the relaxation time of the piston and decay time of charges on the newly created surfaces of crystals. As the product of the velocity of dislocations and pinning time of dislocations gives the mean free path of a moving dislocation. Both factors play an important role in the ML excitation of impurity doped II–VI semiconductors. The linear increase of total ML intensity IT with the impact velocity indicates that the damage increases linearly with impact velocity of the load. Thus, the ML measurement can be used remotely to monitor the real‐time damage in the structures, and therefore, the ML of ZnS:Mn phosphor has also the potential for a structural health monitoring system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Red emission intensity was optimized in three stages, by investigating the effects of: (i) host composition (Gd, Y and Gd/Y), (ii) codoping Li+ as a sensitizer and, finally, (iii) with a SiO2 shell coating as a protecting layer. Lanthanide vanadate powder phosphors were synthesized using a modified colloidal precipitation technique. The effects of SiO2 coating on phosphor particles were characterized using scanning electron microscopy (SEM)‐EDAX, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and photoluminescence (PL) measurements. An improvement in the PL intensity on Li codoping was due to improved crystallinity, which led to higher oscillating strengths for the optical transitions, and also a lowering of the inversion symmetry of Eu3+ ions. Red emission intensity due to 5D05D2 transition of the phosphor Y0.94VO4:Eu3+0.05,Li+0.01 was enhanced by 22.28% compared with Y0.95VO4:Eu3+0.05, and was further improved by 58.73% with SiO2 coating. The luminescence intensity (I) and colour coordinates (x, y) of the optimized phosphor Y0.94VO4:Eu3+0.05,Li+0.01@SiO2, where I = 13.07 cd/m2 and (x = 0.6721, y = 0.3240), were compared with values for a commercial red phosphor (Y2O2S:Eu3+), where I = 27 cd/m2 and (x = 0.6522, y = 0.3437). The measured colour coordinates are superior to those of the commercial red phosphor, and moreover, match well with standard NTSC values (x = 0.67, y = 0.33). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were synthesized using the solid‐state reaction method. X‐Ray diffraction (XRD) and photoluminescence (PL) analyses were used to characterize the phosphors. The XRD results revealed that the synthesized CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were crystalline and are assigned to the monoclinic structure with a space group C2/c. The calculated crystal sizes of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors with a main (221) diffraction peak were 44.87 and 53.51 nm, respectively. Energy‐dispersive X‐ray spectroscopy (EDX) confirmed the proper preparation of the sample. The PL emission spectra of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors have a broad band peak at 444.5 and 466 nm, respectively, which is due to electronic transition from 4f65d1 to 4f7. The afterglow results indicate that the CaMgSi2O6:Eu2+,Dy3+ phosphor has better persistence luminescence than the CaMgSi2O6:Eu2+,Ce3+ phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ long afterglow phosphors were synthesized under a weak reducing atmosphere by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDX), and photo‐, thermo‐ and mechanoluminescence spectroscopic techniques. The phase structure of the sintered phosphor was an akermanite type structure, which belongs to tetragonal crystallography. The thermoluminescence properties of these phosphors were investigated and compared. Under ultraviolet light excitation, the emission spectra of both prepared phosphors were composed of a broad emission band peaking at 470 nm. When the Sr2MgSi2O7:Eu2+ phosphor was co‐doped with Dy3+, the photoluminescence (PL), afterglow and mechanoluminescence (ML) intensity were strongly enhanced. The decay graph indicated that both the sintered phosphors contained fast decay and slow decay processes. The ML intensities of Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ phosphors were increased proportionally with increasing impact velocity, a finding that suggests that these phosphors could be used as sensors to detect the stress of an object. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号