首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when testing the treatment effect. One of the most important approaches to analyze a set of correlated data is the generalized estimating equation (GEE) proposed by Liang and Zeger, in which the “working correlation structure” is introduced and the association pattern depends on a vector of association parameters denoted by ρ. In this paper, we utilize GEE models to test the treatment effect in a two‐group comparison for continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect are derived for the different types of outcome. RE is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used structure in CRTs—exchangeable, and derive the simpler formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions through simulation studies. We propose an adjusted sample size due to efficiency loss. Additionally, we also propose an optimal sample size estimation based on the GEE models under a fixed budget for known and unknown association parameter (ρ) in the working correlation structure within the cluster.  相似文献   

2.
Sample size calculations based on two‐sample comparisons of slopes in repeated measurements have been reported by many investigators. In contrast, the literature has paid relatively little attention to the design and analysis of K‐sample trials in repeated measurements studies where K is 3 or greater. Jung and Ahn (2003) derived a closed sample size formula for two‐sample comparisons of slopes by taking into account the impact of missing data. We extend their method to compare K‐sample slopes in repeated measurement studies using the generalized estimating equation (GEE) approach based on independent working correlation structure. We investigate the performance of the sample size formula since the sample size formula is based on asymptotic theory. The proposed sample size formula is illustrated using a clinical trial example. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Generalized estimating equations (GEE) are used in the analysis of cluster randomized trials (CRTs) because: 1) the resulting intervention effect estimate has the desired marginal or population-averaged interpretation, and 2) most statistical packages contain programs for GEE. However, GEE tends to underestimate the standard error of the intervention effect estimate in CRTs. In contrast, penalized quasi-likelihood (PQL) estimates the standard error of the intervention effect in CRTs much better than GEE but is used less frequently because: 1) it generates an intervention effect estimate with a conditional, or cluster-specific, interpretation, and 2) PQL is not a part of most statistical packages. We propose taking the variance estimator from PQL and re-expressing it as a sandwich-type estimator that could be easily incorporated into existing GEE packages, thereby making GEE useful for the analysis of CRTs. Using numerical examples and data from an actual CRT, we compare the performance of this variance estimator to others proposed in the literature, and we find that our variance estimator performs as well as or better than its competitors.  相似文献   

4.
Since Liang and Zeger (1986) proposed the ‘generalized estimating equations’ approach for the estimation of regression parameters in models with correlated discrete responses, a lot of work has been devoted to the investigation of the properties of the corresponding GEE estimators. However, the effects of different kinds of covariates have often been overlooked. In this paper it is shown that the use of non-singular block invariant matrices of covariates, as e.g. a design matrix in an analysis of variance model, leads to GEE estimators which are identical regardless of the ‘working’ correlation matrix used. Moreover, they are efficient (McCullagh, 1983). If on the other hand only covariates are used which are invariant within blocks, the efficiency gain in choosing the ‘correct’ vs. an ‘incorrect’ correlation structure is shown to be negligible. The results of a simple simulation study suggest that although different GEE estimators are not identical and are not as efficient as a ML estimator, the differences are still negligible if both types of invariant covariates are present.  相似文献   

5.
Sutradhar BC  Das K 《Biometrics》2000,56(2):622-625
Liang and Zeger (1986, Biometrika 73, 13-22) introduced a generalized estimating equation (GEE) approach based on a working correlation matrix to obtain efficient estimators of regression parameters in the class of generalized linear models for repeated measures data. As demonstrated by Crowder (1995, Biometrika 82, 407-410), because of uncertainty of the definition of the working correlation matrix, the Liang-Zeger approach may, in some cases, lead to a complete breakdown of the estimation of the regression parameters. After taking this comment of Crowder into account, recently Sutradhar and Das (1999, Biometrika 86, 459-465) examined the loss of efficiency of the regression estimators due to misspecification of the correlation structures. But their study was confined to the regression estimation with cluster-level covariates, as in the original paper of Liang and Zeger. In this paper, we study this efficiency loss problem for the generalized regression models with within-cluster covariates by utilizing the approach of Sutradhar and Das (1999).  相似文献   

6.
The frequency of cluster-randomized trials (CRTs) in peer-reviewed literature has increased exponentially over the past two decades. CRTs are a valuable tool for studying interventions that cannot be effectively implemented or randomized at the individual level. However, some aspects of the design and analysis of data from CRTs are more complex than those for individually randomized controlled trials. One of the key components to designing a successful CRT is calculating the proper sample size (i.e. number of clusters) needed to attain an acceptable level of statistical power. In order to do this, a researcher must make assumptions about the value of several variables, including a fixed mean cluster size. In practice, cluster size can often vary dramatically. Few studies account for the effect of cluster size variation when assessing the statistical power for a given trial. We conducted a simulation study to investigate how the statistical power of CRTs changes with variable cluster sizes. In general, we observed that increases in cluster size variability lead to a decrease in power.  相似文献   

7.
GEE with Gaussian estimation of the correlations when data are incomplete   总被引:4,自引:0,他引:4  
This paper considers a modification of generalized estimating equations (GEE) for handling missing binary response data. The proposed method uses Gaussian estimation of the correlation parameters, i.e., the estimating function that yields an estimate of the correlation parameters is obtained from the multivariate normal likelihood. The proposed method yields consistent estimates of the regression parameters when data are missing completely at random (MCAR). However, when data are missing at random (MAR), consistency may not hold. In a simulation study with repeated binary outcomes that are missing at random, the magnitude of the potential bias that can arise is examined. The results of the simulation study indicate that, when the working correlation matrix is correctly specified, the bias is almost negligible for the modified GEE. In the simulation study, the proposed modification of GEE is also compared to the standard GEE, multiple imputation, and weighted estimating equations approaches. Finally, the proposed method is illustrated using data from a longitudinal clinical trial comparing two therapeutic treatments, zidovudine (AZT) and didanosine (ddI), in patients with HIV.  相似文献   

8.
Generalized estimating equations (GEE) are extension of generalized linear models (GLM) widely applied in longitudinal data analysis. GEE are also applied in spatial data analysis using geostatistics methods. In this paper, we advocate application of GEE for spatial lattice data by modeling the spatial working correlation matrix using the Moran's index and the spatial weight matrix. We present theoretical developments and results for simulated and actual data as well. For the former case, 1,000 samples of a random variable (response variable) defined in (0, 1) interval were generated using different values of the Moran's index. In addition, 1,000 samples of a binary and a continuous variable were also randomly generated as covariates. In each sample, three structures of spatial working correlation matrices were used while modeling: The independent, autoregressive, and the Toeplitz structure. Two measures were used to evaluate the performance of each of the spatial working correlation structures: the asymptotic relative efficiency and the working correlation selection criterions. The results showed that both measures indicated that the autoregressive spatial working correlation matrix proposed in this paper presents the best performance in general. For the actual data case, the proportion of small farmers who used improved maize varieties was considered as the response variable and a set of nine variables were used as covariates. Two structures of spatial working correlation matrices were used and the results showed consistence with those obtained in the simulation study.  相似文献   

9.
10.
In this paper, we develop a Gaussian estimation (GE) procedure to estimate the parameters of a regression model for correlated (longitudinal) binary response data using a working correlation matrix. A two‐step iterative procedure is proposed for estimating the regression parameters by the GE method and the correlation parameters by the method of moments. Consistency properties of the estimators are discussed. A simulation study was conducted to compare 11 estimators of the regression parameters, namely, four versions of the GE, five versions of the generalized estimating equations (GEEs), and two versions of the weighted GEE. Simulations show that (i) the Gaussian estimates have the smallest mean square error and best coverage probability if the working correlation structure is correctly specified and (ii) when the working correlation structure is correctly specified, the GE and the GEE with exchangeable correlation structure perform best as opposed to when the correlation structure is misspecified.  相似文献   

11.
Cluster randomized trials (CRTs) frequently recruit a small number of clusters, therefore necessitating the application of small-sample corrections for valid inference. A recent systematic review indicated that CRTs reporting right-censored, time-to-event outcomes are not uncommon and that the marginal Cox proportional hazards model is one of the common approaches used for primary analysis. While small-sample corrections have been studied under marginal models with continuous, binary, and count outcomes, no prior research has been devoted to the development and evaluation of bias-corrected sandwich variance estimators when clustered time-to-event outcomes are analyzed by the marginal Cox model. To improve current practice, we propose nine bias-corrected sandwich variance estimators for the analysis of CRTs using the marginal Cox model and report on a simulation study to evaluate their small-sample properties. Our results indicate that the optimal choice of bias-corrected sandwich variance estimator for CRTs with survival outcomes can depend on the variability of cluster sizes and can also slightly differ whether it is evaluated according to relative bias or type I error rate. Finally, we illustrate the new variance estimators in a real-world CRT where the conclusion about intervention effectiveness differs depending on the use of small-sample bias corrections. The proposed sandwich variance estimators are implemented in an R package CoxBcv .  相似文献   

12.
The Generalised Estimating Equations (GEE) proposed by Liang and Zeger (1986) and Zeger and Liang (1986) have found considerable attention in the last decade (for an overview see e.g. Ziegler, and Blettner , 1998). Several self-made programs for solving the GEE are available. This paper presents a comparison of three GEE procedures that are already available in SAS PROC GENMOD, STATA procedure XTGEE and SUDAAN PROC MULTILOG. We show that the estimation results may be quite distinct due to different implementations. Summing up, it is pleasant that GEE is becoming established in commercial software packages. However, some aspects of the implementations should be improved.  相似文献   

13.
We propose to analyze panel count data using a spline-based semiparametric projected generalized estimating equation (GEE) method with the proportional mean model E(N(t)|Z) = Λ(0)(t) e(β(0)(T)Z). The natural logarithm of the baseline mean function, logΛ(0)(t), is approximated by a monotone cubic B-spline function. The estimates of regression parameters and spline coefficients are obtained by projecting the GEE estimates into the feasible domain using a weighted isotonic regression (IR). The proposed method avoids assuming any parametric structure of the baseline mean function or any stochastic model for the underlying counting process. Selection of the working covariance matrix that accounts for overdispersion improves the estimation efficiency and leads to less biased variance estimations. Simulation studies are conducted using different working covariance matrices in the GEE to investigate finite sample performance of the proposed method, to compare the estimation efficiency, and to explore the performance of different variance estimates in presence of overdispersion. Finally, the proposed method is applied to a real data set from a bladder tumor clinical trial.  相似文献   

14.
We propose a new approach to fitting marginal models to clustered data when cluster size is informative. This approach uses a generalized estimating equation (GEE) that is weighted inversely with the cluster size. We show that our approach is asymptotically equivalent to within-cluster resampling (Hoffman, Sen, and Weinberg, 2001, Biometrika 73, 13-22), a computationally intensive approach in which replicate data sets containing a randomly selected observation from each cluster are analyzed, and the resulting estimates averaged. Using simulated data and an example involving dental health, we show the superior performance of our approach compared to unweighted GEE, the equivalence of our approach with WCR for large sample sizes, and the superior performance of our approach compared with WCR when sample sizes are small.  相似文献   

15.
This paper considers the impact of bias in the estimation of the association parameters for longitudinal binary responses when there are drop-outs. A number of different estimating equation approaches are considered for the case where drop-out cannot be assumed to be a completely random process. In particular, standard generalized estimating equations (GEE), GEE based on conditional residuals, GEE based on multivariate normal estimating equations for the covariance matrix, and second-order estimating equations (GEE2) are examined. These different GEE estimators are compared in terms of finite sample and asymptotic bias under a variety of drop-out processes. Finally, the relationship between bias in the estimation of the association parameters and bias in the estimation of the mean parameters is explored.  相似文献   

16.
Pragmatic trials evaluating health care interventions often adopt cluster randomization due to scientific or logistical considerations. Systematic reviews have shown that coprimary endpoints are not uncommon in pragmatic trials but are seldom recognized in sample size or power calculations. While methods for power analysis based on K ( K 2 $K\ge 2$ ) binary coprimary endpoints are available for cluster randomized trials (CRTs), to our knowledge, methods for continuous coprimary endpoints are not yet available. Assuming a multivariate linear mixed model (MLMM) that accounts for multiple types of intraclass correlation coefficients among the observations in each cluster, we derive the closed-form joint distribution of K treatment effect estimators to facilitate sample size and power determination with different types of null hypotheses under equal cluster sizes. We characterize the relationship between the power of each test and different types of correlation parameters. We further relax the equal cluster size assumption and approximate the joint distribution of the K treatment effect estimators through the mean and coefficient of variation of cluster sizes. Our simulation studies with a finite number of clusters indicate that the predicted power by our method agrees well with the empirical power, when the parameters in the MLMM are estimated via the expectation-maximization algorithm. An application to a real CRT is presented to illustrate the proposed method.  相似文献   

17.
The Generalised Estimating Equations (GEE) proposed by Liang and Zeger (1986) and Zeger and Liang (1986) have found considerable attention in the last ten years and several extensions have been proposed. In this annotated bibliography we describe the development of the GEE and its extensions during the last decade. Additionally, we discuss advantages and disadvantages of the different parametrisations that have been proposed in the literature. Furthermore, we review regression diagnostic techniques and approaches for dealing with missing data. We give an insight to the different fields of application in biometry. We also describe the software available for the GEE.  相似文献   

18.
Sample sizes in the multivariate analysis of repeated measurements   总被引:1,自引:0,他引:1  
E F Vonesh  M A Schork 《Biometrics》1986,42(3):601-610
Determination of sample sizes for comparing two or more treatments in repeated measurements experiments is considered. Multivariate normality of the individual's vector of repeated measures is assumed. Particular emphasis is placed on applications wherein the error variance-covariance matrix is arbitrary positive-definite. Sample size determination is based on power considerations associated with Hotelling's T2 test and the desire to detect a specified difference between any pair of treatment means. Tabulated sample sizes are given in the case of an equal variance-unequal covariance structure. The utility of these sample sizes is also demonstrated for a more general variance-covariance structure. Applications of these sample sizes are illustrated with two examples.  相似文献   

19.
Efficiency of regression estimates for clustered data   总被引:1,自引:0,他引:1  
Mancl LA  Leroux BG 《Biometrics》1996,52(2):500-511
Statistical methods for clustered data, such as generalized estimating equations (GEE) and generalized least squares (GLS), require selecting a correlation or convariance structure to specify the dependence between observations within a cluster. Valid regression estimates can be obtained that do not depend on correct specification of the true correlation, but inappropriate specifications can result in a loss of efficiency. We derive general expressions for the asymptotic relative efficiency of GEE and GLS estimators under nested correlation structures. Efficiency is shown to depend on the covariate distribution, the cluster sizes, the response variable correlation, and the regression parameters. The results demonstrate that efficiency is quite sensitive to the between- and within-cluster variation of the covariates, and provide useful characterizations of models for which upper and lower efficiency bounds are attained. Efficiency losses for simple working correlation matrices, such as independence, can be large even for small to moderate correlations and cluster sizes.  相似文献   

20.
David I. Warton 《Biometrics》2011,67(1):116-123
Summary A modification of generalized estimating equations (GEEs) methodology is proposed for hypothesis testing of high‐dimensional data, with particular interest in multivariate abundance data in ecology, an important application of interest in thousands of environmental science studies. Such data are typically counts characterized by high dimensionality (in the sense that cluster size exceeds number of clusters, n>K) and over‐dispersion relative to the Poisson distribution. Usual GEE methods cannot be applied in this setting primarily because sandwich estimators become numerically unstable as n increases. We propose instead using a regularized sandwich estimator that assumes a common correlation matrix R , and shrinks the sample estimate of R toward the working correlation matrix to improve its numerical stability. It is shown via theory and simulation that this substantially improves the power of Wald statistics when cluster size is not small. We apply the proposed approach to study the effects of nutrient addition on nematode communities, and in doing so discuss important issues in implementation, such as using statistics that have good properties when parameter estimates approach the boundary (), and using resampling to enable valid inference that is robust to high dimensionality and to possible model misspecification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号