首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanoluminescence (ML) glow is produced on the back side when the front of a metal sample is irradiated with infrared Nd:YAG laser pulses. An incident laser beam with a power density below the plasma‐flare onset threshold causes a rise in temperature in the studied metal. As the incident laser power density increases, the intensity of the ML glow signal also increases. On the basis of the laser power density‐induced temperature, an expression is derived for the temperature‐induced thermal stress. An expression is derived for the correlation between thermal stress and laser power density, which indicates that the temperature‐induced thermal stress is directly related to the incident laser power density. In the region of plastic deformation, temperature‐induced thermal stress is related to the strain and, consequently, to the emitted ML intensity. Finally, an expression is derived for the laser power dependence of the ML intensity, and good agreement is found between the theoretical and experimental results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Visible lasers emitting in the green spectral region are being routinely employed in various medical and defense fields namely treatment of pigmented lesions, tattoo inks, port wine stains, dazzling the target or mob dispersal. Despite their increasing applications, lasers also tend to pose occupational hazards to operators, ancillary personnel, individuals undergoing laser therapies. This study was aimed at investigating the effects of different doses of 532‐nm continuous wave laser on rat skin. The present study demonstrated that higher fluences of 532‐nm continuous wave (CW) laser induces significant tissue damage through induction of tumor necrosis factor‐α, cyclooxygenase‐2, tumor protein (p53), PARP 1, caspase3 which in turn leads to tissue damage and cell death. Furthermore, level of heat shock proteins, pAkt were found up‐regulated as a cope up response to laser‐induced stress. On the basis of the findings, irradiation with 532‐nm CW laser up to 2.5 J/cm2 was found within the safe exposure limits. Thus, it is probably the first attempt to demonstrate the tissue damage induced by 532‐nm CW laser on skin, which may help in choosing safe laser dose for certain skin‐based applications and evolving methods to ameliorate laser‐inflicted injuries.  相似文献   

3.
Mathematical approaches made for both the charged dislocation model and piezoelectrically induced electron bombardment model of fracto‐mechanoluminescence (FML), the luminescence induced by fracture of solids, in ZnS:Mn phosphor indicate that the piezoelectrically induced electron bombardment model provides a dominating process for the FML of ZnS phosphors. The concentration of 3000 ppm Mn2+ is optimal for ML intensity of ZnS:Mn phosphor. The decay time of ML gives the relaxation time of the piston used to deform the sample and the time tm of maximum of ML is controlled by both the relaxation time of the piston and decay time of charges on the newly created surfaces of crystals. As the product of the velocity of dislocations and pinning time of dislocations gives the mean free path of a moving dislocation. Both factors play an important role in the ML excitation of impurity doped II–VI semiconductors. The linear increase of total ML intensity IT with the impact velocity indicates that the damage increases linearly with impact velocity of the load. Thus, the ML measurement can be used remotely to monitor the real‐time damage in the structures, and therefore, the ML of ZnS:Mn phosphor has also the potential for a structural health monitoring system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Intraoperative smoke‐generation limits the quality of vision during laparoscopic/endoscopic laser‐assisted surgeries. The current study aimed at the evaluation of factors affecting this phenomenon. As a first step, a suitable experimental setup and a test tissue model were established for this investigation. The experimental setup is composed of a specific sample container, a laser therapy component suitable for the ablation of model tissue at different treatment wavelengths (λ = 980 nm, 1350 nm, 1470 nm), a suction unit providing continuous smoke extraction, and a detection unit for smoke quantification via detection of light (λ = 633 nm) scattered from smoke particles. The ablation rate (AR) was calculated by dividing the ablated volume by the ablation time (60 sec). The laser‐induced scattering signal intensity of the smoke (SI) was determined from time‐charts of the signal intensity as a measure for vision, in addition a delay‐time tdelay could be derived defining the onset of SI after the laser was switched on. The ratio SI/AR is used as a measure for smoke generation in relation to the ablation rate. Additionally the light transmission of the tissue samples was used to estimate their optical properties. In this set‐up, smoke generation using λ = 980 nm as ablation laser wavelength was detected after a delay‐time tdelay = (121.6 ± 24.8) sec which is significantly longer compared to the wavelengths λ = 1350 nm with tdelay = (89.8 ± 19.3) sec and λ = 1470 nm with tdelay = (24.7 ± 5.4) sec. Thus, the delay

Experimental set‐up consisting of sample container, laser therapy component, suction unit and scattered‐light detection compartment. time is wavelength‐dependent. The SI/AR ratio was significantly different (p < 0.001) for 1470 nm irradiation compared to 980 nm irradiation [SI/AR(1470) = (11.8 ± 2.6) · 103 vs. SI/AR(980) = (8.6 ± 2.0) · 103]. The ablation crater for 980 nm irradiation was comparable with 1470 nm irradiation, but the coagulation rim was thicker in the 980 nm case. In conclusion, it could be shown experimentally that smoke‐generation depends on the wavelength used for laser ablation.  相似文献   


5.
In the present article we report europium‐doped strontium ortho‐silicates, namely Sr2SiO4:xEu3+ (x = 1.0, 1.5, 2.0, 2.5 or 3.0 mol%) phosphors, prepared by solid state reaction method. The crystal structures of the sintered phosphors were consistent with orthorhombic crystallography with a Pmna space group. The chemical compositions of the sintered phosphors were confirmed by energy dispersive X‐ray spectroscopy (EDS). Thermoluminescence (TL) kinetic parameters such as activation energy, order of kinetics and frequency factors were calculated by the peak shape method. Orange‐red emission originating from the 5D07FJ (J = 0, 1, 2, 3) transitions of Eu3+ ions could clearly be observed after samples were excited at 395 nm. The combination of these emissions constituted orange‐red light as indicated on the Commission Internationale de l'Eclairage (CIE) chromaticity diagram. Mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increasing impact velocity of the moving piston that suggests that these phosphors can also be used as sensors to detect the stress of an object. Thus, the present investigation indicates that the piezo‐electricity was responsible for producing ML in the prepared phosphor.  相似文献   

6.
When an γ‐irradiated Dy‐, Tm‐, Sm‐ or Mn‐doped CaSO4 crystal is impulsively deformed, two peaks appear in the ML intensity versus time curve, whereby the first ML peak is found in the deformation region and the second in the post‐deformation region of the crystals. In this study, intensities Im1 and Im2 corresponding to first and second ML peaks, respectively, increased linearly with an impact velocity v0 of the piston used to deform the crystals, and times tm1 and tm2 corresponding to the first and second ML peaks, respectively, decreased with impact velocity. Total ML intensity initially increased with impact velocity and then reached a saturation value for higher values of impact velocity. ML intensity increased with increasing γ‐doses and size of crystals. Results showed that the electric field produced as a result of charging of newly‐created surfaces caused tunneling of electrons to the valence band of the hole‐trapping centres. The free holes generated moved in the valence band and their subsequent recombination with electron trapping centres released energy, thereby resulting in excitation of luminescent centres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, the time decay of the chlorophyll fluorescence intensity (TDCFI) of vegetation was measured based on laser‐induced fluorescence (LIF) technology with a 355 nm laser serving as the excitation light source. The pseudo‐color diagram of the TDCFI (PDTDCFIs) was proposed for use as a characteristic fingerprint for the analysis of various plant species based on variations in the fluorescence intensity over time. Compared with the steady‐state fluorescence spectra, two‐dimensional PDTDCFIs contained more spectral information, including variations in both the shape of the laser‐induced fluorescence spectra and the relative intensity. The experimental results demonstrated that the PDTDCFIs of various plant species show distinct differences, and this was successfully applied in the classification of plant species. Therefore, the PDTDCFIs of plants could provide researchers with a more reliable and useful tool for the characterization of vegetation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Zinc oxide (ZnO) and ZnO:Cu nanoparticles (NPs) were synthesized using a rapid, controllable, one‐pot and room‐temperature pulsed UV‐laser assisted method. UV‐laser irradiation was used as an effective energy source in order to gain better control over the NPs size and morphology in aqueous media. Parameters effective in laser assisted synthesis of NPs such as irradiation time and laser shot repetition rate were optimized. Photoluminescence (PL) spectra of ZnO NPs showed a broad emission with two trap state peaks located at 442 and 485 nm related to electronic transition from zinc interstitial level (IZn) to zinc vacancy level (VZn) and electronic transition from conduction band to the oxygen vacancy level (VO), respectively. For ZnO:Cu NPs, trap state emissions disappeared completely and a copper (Cu)‐related emission appeared. PL intensity of Cu‐related emission increased with the increase in concentration of Cu2+, so that for molar ratio of Cu:Zn 2%, optimal value of PL intensity was obtained. The photocatalytic activity of Cu‐doped ZnO revealed 50 and 100% increasement than that of undoped NPs under UV and visible irradiation, respectively. The enhanced photocatalytic activity could be attributed to smaller crystal size, as well as creation of impurity acceptor levels (T2) inside the ZnO energy band gap.  相似文献   

9.
The present paper describes the synthesis of cerium‐doped barium magnesium aluminate phosphor by combustion method. The crystal structure of synthesized phosphor belongs to the P63/mmc space group and is related to the β‐alumina structure. The photoluminescence emission spectra exhibited a broad peak centered at 440 nm showing the Ce3+ emission. The thermoluminescence properties of phosphors under ultraviolet irradiation were investigated. The activation energy was calculated by Chen's empirical method. Fracto‐mechanoluminescence properties were also investigated. The phosphor showed mechanoluminescence (ML) properties without irradiation and the ML intensity increased linearly with the impact height of the moving piston. Therefore this compound may have a use as a damage sensor. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Lack of sensory feedback during laser surgery prevents surgeons from discerning the exact location of the incision, which increases duration and complexity of the treatment. In this study we demonstrate a new method for monitoring of laser ablation procedures. Real‐time tracking of the exact three dimensional (3D) lesion profile is accomplished by detection of shock waves emanating from the ablation spot and subsequent reconstruction of the incision location using time‐of‐flight data obtained from multiple acoustic detectors. Here, incisions of up to 9 mm in depth, created by pulsed laser ablation of fresh bovine tissue samples, were successfully monitored in real time. It was further observed that, by utilizing as little as 12 detection elements, the incision profile can be characterized with accuracy below 0.5 mm in all three dimensions and in good agreement with histological examinations. The proposed method holds therefore promise for delivering high precision real‐time feedback during laser surgeries. (© 2013 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
The present paper reports the impulsive excitation of mechanoluminescence (ML) in Sr0.97Al2O4:Eu0.01,Dy0.02 nanophosphors prepared using a combustion technique. The phosphors are characterized using X‐ray powder diffraction (XRD), high‐resolution transmission electron microscopy (HRTEM) and photoluminescence (PL). The XRD results show that the samples exhibit a monoclinic α‐phase in the crystal structure. The space group of SrAl2O4:Eu,Dy nanophosphors is monoclinic P21. The PL and ML spectra of SrAl2O4:Eu,Dy nanophosphors are excited using light with a wavelength of 365 nm and emission is found at 516 nm. The prepared nanophosphors exhibits an intense ML that can be seen in daylight with the naked eye. When a sample powder is deformed impulsively by the impact of a moving piston, the ML intensity initially increases linearly with time, attains a peak value, Im, at time tm, and then decreases with time. The peak ML intensity, Im, and total ML intensity, IT, increase linearly with applied pressure and impact velocity. The ML intensity decreases with successive impacts of load onto the phosphors, and the diminished ML intensity can be approximately recovered by UV irradiation. The activation energy using thermoluminescence is found to be 0.57 eV for SrAl2O4:Eu,Dy nanophosphors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A new near‐infrared fluorescence sensor PDI‐PD for Ag+ ions was successfully prepared and its structure characterized by 1H nuclear magnetic resonance (NMR), 13C NMR and high‐resolution mass spectrometry; matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (HRMS MALDI‐TOF). The probe exhibited rapid, sensitive, and selective two‐channel fluorescence responses towards Ag+ ions and protons. The probe has a marked high binding affinity and high sensitivity for Ag+, with a detection limit of 1.4 × 10?6 M. An approximately five‐fold enhanced core emission at 784 nm was attributed to fluorescence resonance energy transfer (FRET). The enhanced core emission of the probe with Ag+ ions based on photo‐induced electron transfer and FRET is discussed. In addition, the probe presented a visible colour change. All experimental results demonstrated that PDI‐PD is an efficient tool for the selective, sensitive and rapid detection of Ag+ ions and protons using two‐channel fluorescence responses.  相似文献   

13.
The speed and efficiency of quantum cascade laser‐based mid‐infrared microspectroscopy are demonstrated using two different model organisms as examples. For the slowly moving Amoeba proteus, a quantum cascade laser is tuned over the wavelength range of 7.6 µm to 8.6 µm (wavenumbers 1320 cm–1 and 1160 cm–1, respectively). The recording of a hyperspectral image takes 11.3 s whereby an average signal‐to‐noise ratio of 29 is achieved. The limits of time resolution are tested by imaging the fast moving Caenorhabditis elegans at a discrete wavenumber of 1265 cm–1. Mid‐infrared imaging is performed with the 640 × 480 pixel video graphics array (VGA) standard and at a full‐frame time resolution of 0.02 s (i.e. well above the most common frame rate standards). An average signal‐to‐noise ratio of 16 is obtained. To the best of our knowledge, these findings constitute the first mid‐infrared imaging of living organisms at VGA standard and video frame rate.

  相似文献   


14.
In slow mainstream flows (<4–6 cm · s?1), the transport of dissolved nutrients to seaweed blade surfaces is reduced due to the formation of thicker diffusion boundary layers (DBLs). The blade morphology of Macrocystis pyrifera (L.) C. Agardh varies with the hydrodynamic environment in which it grows; wave‐exposed blades are narrow and thick with small surface corrugations (1 mm tall), whereas wave‐sheltered blades are wider and thinner with large (2–5 cm) edge undulations. Within the surface corrugations of wave‐exposed blades, the DBL thickness, measured using an O2 micro‐optode, ranged from 0.67 to 0.80 mm and did not vary with mainstream velocities between 0.8 and 4.5 cm · s?1. At the corrugation apex, DBL thickness decreased with increasing seawater velocity, from 0.4 mm at 0.8 cm · s?1 to being undetectable at 4.5 cm · s?1. Results show how the wave‐exposed blades trap fluid within the corrugations at their surface. For wave‐sheltered blades at 0.8 cm · s?1, a DBL thickness of 0.73 ± 0.31 mm within the edge undulation was 10‐fold greater than at the undulation apex, while at 2.1 cm · s?1, DBL thicknesses were similar at <0.07 mm. Relative turbulence intensity was measured using an acoustic Doppler velocimeter (ADV), and overall, there was little evidence to support our hypothesis that the edge undulations of wave‐sheltered blades increased turbulence intensity compared to wave‐exposed blades. We discuss the positive and negative effects of thick DBLs at seaweed surfaces.  相似文献   

15.
When II–VI semiconductors are fractured, initially the mechanoluminescence (ML) intensity increases with time, attains a maximum value Im at a time tm, at which the fracture is completed. After tm, the ML intensity decreases with time, Im increase linearly with the impact velocity v0 and IT initially increase linearly with v0 and then it attains a saturation value for a higher value of v0. For photoluminescence, the temperature dependence comes mainly from luminescence efficiency, ηo; however, for the ML excitation, there is an additional factor, rt dependent on temperature. During fracture, charged dislocations moving near the tip of moving cracks produce intense electric field, causes band bending. Consequently, tunneling of electrons from filled electron traps to the conduction band takes place, whereby the radiative electron–hole recombination give rise to the luminescence. In the proposed mechanism, expressions are derived for the rise, the time tm corresponding to the ML intensity versus time curve, the ML intensity Im corresponding to the peak of ML intensity versus time curve, the total fracto‐mechanoluminescence (FML) intensity IT, and fast and slow decay of FML intensity of II–VI semiconductors. The FML plays a significant role in understanding the processes involved in biological detection, earthquake lights and mine failure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Taking advantage of the compelling properties of d ‐penicillamine (d ‐PA) combined with copper, a method for the sensitive and selective determination of d ‐PA was established using copper nanocluster (Cu NC)‐based fluorescence enhancement. d ‐PA molecules containing a thiol compound showed a strong tendency to combine with the surface of Cu NCs, causing the re‐dispersion of nanoclusters and therefore fluorescence intensity was enhanced. Fluorescence enhancement efficiency of Cu NCs induced by d ‐PA was linear, with the d ‐PA concentration varying from 0.6–30 μg ml?1 (R2 = 0.9952) and with a detection limit of 0.54 μg ml?1. d ‐PA content in human urine samples was detected with recoveries of 104.8–112.99%. Fluorescence‐enhanced determination of d ‐PA using Cu NCs was established for the first time and this rapid, easy and sensitive method should attract much attention for this application.  相似文献   

17.
Ce3+‐doped calcium aluminosilicate phosphor was prepared by a combustion‐assisted method at an initiating temperature of 600°C. Structural characterization was carried out using X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The absorption spectra of Ca2Al2SiO7:Ce3+ showed an absorption edge at 230 nm. The optical characterization of Ca2Al2SiO7:Ce3+ phosphor was investigated in a fracto‐mechanoluminescence (FML) and thermoluminescence (TL) study. The peak of ML intensity increased as the height of impact of the moving piston increased. The TL intensity of Ca2Al2SiO7:Ce3+ was recorded for different exposure times of UV and γ‐irradiation and it was observed that TL intensity was maximum for a UV irradiation time of 30 min and for a γ‐dose of 1180 Gy. The TL intensity had three peaks for UV irradiation at temperatures 82°C, 125°C and 203°C. Also the TL intensity had a single peak at 152°C for γ‐irradiation. The TL and ML emission spectra of Ca2Al2SiO7:Ce3+ phosphor showed maximum emission at 400 nm. The possible mechanisms involved in the TL and ML processes of the Ca2Al2SiO7:Ce3+ phosphor are also explained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The occurrence of geranium rust (caused by Puccinia pelargonii‐zonalis) in commercial greenhouses can result in unmarketable plants and significant economic losses. Currently, detection of geranium rust relies solely on scouting for symptoms and signs of the disease. The purpose of this research was to develop a rapid detection assay for P. pelargonii‐zonalis‐infected tissues or urediniospores on greenhouse‐grown geraniums. Two oligonucleotide primers were designed based on internal transcribed spacer sequence data from three isolates of P. pelargonii‐zonalis. The primers amplified a 131‐bp product from genomic DNA from each isolate of P. pelargonii‐zonalis but did not amplify a product from genomic DNA from twelve other rust fungi or four other plant pathogenic fungi. A PCR product was amplified consistently from solutions that contained 1 ng or 100 pg/ml of purified P. pelargonii‐zonalis DNA in conventional PCR and at 1 pg/ml using real‐time PCR. The detection threshold was 102 urediniospores/ml for real‐time PCR and 104 urediniospores/ml for conventional PCR using urediniospores collected by vacuum from sporulating lesions. Puccinia pelargonii‐zonalis DNA was amplified by real‐time PCR from urediniospores washed from a single inoculated leaf, but recovered urediniospores were below detection threshold from one inoculated leaf with 5, 10, 25 and 50 non‐inoculated leaves. Conventional and real‐time PCR did not detect P. pelargonii‐zonalis in infected leaf tissues, presumably due to PCR inhibitors in the geranium leaf tissue. The inhibition of both conventional and real‐time PCR by geranium tissues suggests that a detection assay focusing on urediniospore recovery and microscopic examination with subsequent species verification by PCR may be the most efficient method for assessing the presence of geranium rust in greenhouses.  相似文献   

19.
Green‐to‐red photoconvertible fluorescent proteins have been found to undergo efficient photoconversion by a new method termed primed conversion that uses dual wave‐length illumination with blue and red/near‐infrared light. By modifying a confocal laser‐scanning microscope (CLSM) such that two laser beams only meet at the focal plane, confined photoconversion at the axial dimension has been achieved. The necessity of this custom modification to the CLSM, however, has precluded the wide‐spread use of this method. Here, we investigated whether spatially‐restricted primed conversion could be achieved with CLSM without any hardware modification. We found that the primed conversion of Dendra2 using a conventional CLSM with two visible lasers (473 nm and 635 nm) and a high NA objective lens (NA, 1.30) resulted in dramatic restriction of photoconversion volume: half‐width half‐maximum for the axial dimension was below 5 μm, which is comparable to the outcome of the original method that used the microscope modification. As a proof of this method's effectiveness, we used this technique in living zebrafish embryos and succeeded in revealing the complex anatomy of individual neurons packed between neighboring cells. Because unmodified CLSMs are widely available, this method can be widely applicable for labeling cells with single‐cell resolution.  相似文献   

20.
As low‐level laser therapy immune cells responses are not always clarified, this study aimed to evaluate cytokines and immune cells profile after low‐level laser therapy (LLLT) on arthritis‐induced model. Arthritis was induced in C57BL/6 mice divided into five groups: euthanized 5 hours after inflammation induction; untreated; dexamethasone treated; LLLT at 3 Jcm?2; LLLT at 30 Jcm?2. Cytokine measurements by enzyme‐linked immunosorbent assay and mRNA cytokine relative levels by real‐time quantitative polymerase chain reaction were performed with arthritic ankle (IL‐1β, IL‐6, TNF‐α, IL‐10 and TGF‐β). Macrophages, dendritic cells, natural killer cells, lymphocytes CD4+, CD8+, Treg and costimulatory proteins were quantified in proximal lymph node by flow cytometry. Data showed decrease in all cytokine levels after LLLT and alteration in mRNA relative levels, depending on the energy density used. LLLT was able to increase of immune cell populations analyzed in the lymph node as well as costimulatory proteins expression on macrophages and dendritic cells. Treg TCD4+ and TCD8+ population enrichment were observed in LLLT at 3 and 30 Jcm?2 groups, respectively. Furthermore, Treg TCD8+ cells expressing higher levels of CD25 were observed at LLLT at 30 Jcm?2 group. Our results indicate that LLLT could change the inflammatory course of arthritis, tending to accelerate its resolution through immune cells photobiostimulation.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号