首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
G protein‐coupled receptor kinase 2 (GRK2) plays a central role in the cellular transduction network. In particular, during chronic heart failure GRK2 is upregulated and believed to contribute to disease progression. Thereby, its inhibition offers a potential therapeutic solution to several pathological conditions. In the present study, we performed a SAR study and a NMR conformational analysis of peptides derived from HJ loop of GRK2 and able to selectively inhibit GRK2. From Ala‐scan and d ‐Ala point replacement, we found that Arg residues don't affect the inhibitory properties, while a d ‐amino acid at position 5 is key to the activity. Conformational analysis identified two β‐turns that involve N‐terminal residues, followed by a short extended region. These information can help the design of peptides and peptido‐mimetics with enhanced GRK2 inhibition properties. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 121–128, 2014.  相似文献   

2.
3.
G protein‐coupled receptors (GPCRs) modulate cell function over short‐ and long‐term timescales. GPCR signaling depends on biochemical parameters that define the what, when, and where of receptor function: what proteins mediate and regulate receptor signaling, where within the cell these interactions occur, and how long these interactions persist. These parameters can vary significantly depending on the activating ligand. Collectivity, differential agonist activity at a GPCR is called bias or functional selectivity. Here we review agonist bias at GPCRs with a focus on ligands that show dramatically different cellular responses from their unbiased counterparts.  相似文献   

4.
G protein‐coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) predominantly form A2AR‐D2R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A2AR and D2R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain‐related differences, a new D2R‐deficient mouse with the same genetic background (CD‐1) than the A2AR knock‐out mouse was generated. Locomotor activity, pre‐pulse inhibition (PPI) and drug‐induced catalepsy were then evaluated in wild‐type, A2AR and D2R knock‐out mice, with and without the concomitant administration of either the D2R agonist sumanirole or the A2AR antagonist SCH442416. SCH442416‐mediated locomotor effects were demonstrated to be dependent on D2R signaling. Similarly, a significant dependence on A2AR signaling was observed for PPI and for haloperidol‐induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A2AR‐D2R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders.  相似文献   

5.
Structural characterization of membrane proteins is hampered by their instability in detergent solutions. We modified here a G protein‐coupled receptor, the BLT1 receptor of leukotriene B4, to stabilize it in vitro. For this, we introduced a metal‐binding site connecting the third and sixth transmembrane domains of the receptor. This modification was intended to restrain the activation‐associated relative movement of these helices that results in a less stable packing in the isolated receptor. The modified receptor binds its agonist with low‐affinity and can no longer trigger G protein activation, indicating that it is stabilized in its ground state conformation. Of importance, the modified BLT1 receptor displays an increased temperature‐, detergent‐, and time‐dependent stability compared with the wild‐type receptor. These data indicate that stabilizing the ground state of this GPCR by limiting the activation‐associated movements of the transmembrane helices is a way to increase its stability in detergent solutions; this could represent a forward step on the way of its crystallization.  相似文献   

6.
Recent findings necessitate revision of the traditional view of G protein‐coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either stimulate or inhibit cAMP production in a sustained manner. They do so by remaining associated with their cognate G protein subunit and adenylyl cyclase at endosomal compartments. Once internalized, the GPCRs produce cellular responses distinct from those elicited at the cell surface.  相似文献   

7.
Building reliable structural models of G protein‐coupled receptors (GPCRs) is a difficult task because of the paucity of suitable templates, low sequence identity, and the wide variety of ligand specificities within the superfamily. Template‐based modeling is known to be the most successful method for protein structure prediction. However, refinement of homology models within 1–3 Å Cα RMSD of the native structure remains a major challenge. Here, we address this problem by developing a novel protocol (foldGPCR) for modeling the transmembrane (TM) region of GPCRs in complex with a ligand, aimed to accurately model the structural divergence between the template and target in the TM helices. The protocol is based on predicted conserved inter‐residue contacts between the template and target, and exploits an all‐atom implicit membrane force field. The placement of the ligand in the binding pocket is guided by biochemical data. The foldGPCR protocol is implemented by a stepwise hierarchical approach, in which the TM helical bundle and the ligand are assembled by simulated annealing trials in the first step, and the receptor‐ligand complex is refined with replica exchange sampling in the second step. The protocol is applied to model the human β2‐adrenergic receptor (β2AR) bound to carazolol, using contacts derived from the template structure of bovine rhodopsin. Comparison with the X‐ray crystal structure of the β2AR shows that our protocol is particularly successful in accurately capturing helix backbone irregularities and helix‐helix packing interactions that distinguish rhodopsin from β2AR. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
G protein‐coupled receptors (GPCRs) constitute the largest family of cell surface receptors that mediate numerous cell signaling pathways, and are targets of more than one‐third of clinical drugs. Thanks to the advancement of novel structural biology technologies, high‐resolution structures of GPCRs in complex with their signaling transducers, including G‐protein and arrestin, have been determined. These 3D complex structures have significantly improved our understanding of the molecular mechanism of GPCR signaling and provided a structural basis for signaling‐biased drug discovery targeting GPCRs. Here we summarize structural studies of GPCR signaling complexes with G protein and arrestin using rhodopsin as a model system, and highlight the key features of GPCR conformational states in biased signaling including the sequence motifs of receptor TM6 that determine selective coupling of G proteins, and the phosphorylation codes of GPCRs for arrestin recruitment. We envision the future of GPCR structural biology not only to solve more high‐resolution complex structures but also to show stepwise GPCR signaling complex assembly and disassembly and dynamic process of GPCR signal transduction.  相似文献   

9.
We have recently developed a soluble mimic of the corticotropin‐releasing factor receptor type 1 (CRF1), a membrane‐spanning G protein‐coupled receptor, which allowed investigations on receptor–ligand interactions. The CRF1 mimic consists of the receptor N‐terminus and three synthetic extracellular loops (ECL1–3), which constitute the extracellular receptor domains (ECDs) of CRF1, coupled to a linear peptide template. Here, we report the synthesis of a modified CRF1 mimic, which is more similar to the native receptor possessing a cyclic template that displays the ECDs in a more physiological conformation compared with the initial linear design. In order to facilitate detailed biophysical investigations on CRF1 mimics, we have further established a cost‐efficient access to the CRF1 mimic, which is suitable for isotopic labeling for NMR spectroscopy. To this end, the loop‐mimicking cyclic peptide of the ECL2 of CRF1 was produced recombinantly and cyclized by expressed protein ligation. Cyclic ECL2 was obtained in milligram scale, and CRF1 mimics synthesized from this material displayed the same binding properties as synthetic CRF1 constructs. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The activation/deactivation processes for G-protein coupled receptors (GPCRs) have been computationally studied for several different classes, including rhodopsin, the β2 adrenergic receptor, and the M2 muscarinic receptor. Despite determined cocrystal structures of the adenosine A2A receptor (A2AAR) in complex with antagonists, agonists and an antibody, the deactivation process of this GPCR is not completely understood. In this study, we investigate the convergence of two apo simulations, one starting with an agonist-bound conformation (PDB: 3QAK)14 and the other starting with an antagonist-bound conformation (PDB: 3EML)11. Despite the two simulations not completely converging, we were able to identify distinct intermediate steps of the deactivation process characterized by the movement of Y2887.53 in the NPxxY motif. We find that Y2887.53 contributes to the process by forming hydrogen bonds to residues in transmembrane helices 2 and 7 and losing these interactions upon full deactivation. Y1975.58 also plays a role in the process by forming a hydrogen bond only once the side chain moves from the lipid interface to the middle of the helical bundle.  相似文献   

11.
  1. Download : Download high-res image (226KB)
  2. Download : Download full-size image
  相似文献   

12.
The first crystal structure of a G protein‐coupled receptor (GPCR) was that of the bovine rhodopsin, solved in 2000, and is a light receptor within retina rode cells that enables vision by transducing a conformational signal from the light‐induced isomerization of retinal covalently bound to the receptor. More than 7 years after this initial discovery and following more than 20 years of technological developments in GPCR expression, stabilization, and crystallography, the high‐resolution structure of the adrenaline binding β2‐adrenergic receptor, a ligand diffusible receptor, was discovered. Since then, high‐resolution structures of more than 53 unique GPCRs have been determined leading to a significant improvement in our understanding of the basic mechanisms of ligand‐binding and ligand‐mediated receptor activation that revolutionized the field of structural molecular pharmacology of GPCRs. Recently, several structures of eight unique lipid‐binding receptors, one of the most difficult GPCR families to study, have been reported. This review presents the outstanding structural and pharmacological features that have emerged from these new lipid receptor structures. The impact of these findings goes beyond mechanistic insights, providing evidence of the fundamental role of GPCRs in the physiological integration of the lipid signaling system, and highlighting the importance of sustained research into the structural biology of GPCRs for the development of new therapeutics targeting lipid receptors.  相似文献   

13.
14.
15.
The human genome encodes ~750 G‐protein‐coupled receptors (GPCRs), including prokineticin receptor 2 (PROKR2) involved in the regulation of sexual maturation. Previously reported pathogenic gain‐of‐function mutations of GPCR genes invariably encoded aberrant receptors with excessive signal transduction activity. Although in vitro assays demonstrated that an artificially created inactive mutant of PROKR2 exerted paradoxical gain‐of‐function effects when co‐transfected with wild‐type proteins, such a phenomenon has not been observed in vivo. Here, we report a heterozygous frameshift mutation of PROKR2 identified in a 3.5‐year‐old girl with central precocious puberty. The mutant mRNA escaped nonsense‐mediated decay and generated a GPCR lacking two transmembrane domains and the carboxyl‐terminal tail. The mutant protein had no in vitro signal transduction activity; however, cells co‐expressing the mutant and wild‐type PROKR2 exhibited markedly exaggerated ligand‐induced Ca2+ responses. The results indicate that certain inactive PROKR2 mutants can cause early puberty by enhancing the functional property of coexisting wild‐type proteins. Considering the structural similarity among GPCRs, this paradoxical gain‐of‐function mechanism may underlie various human disorders.  相似文献   

16.
G protein‐coupled receptors (GPCRs) physically connect extracellular information with intracellular signal propagation. Membrane trafficking plays a supportive role by “bookending” signaling events: movement through the secretory pathway delivers GPCRs to the cell surface where receptors can sample the extracellular environment, while endocytosis and endolysosomal membrane trafficking provide a versatile system to titrate cellular signaling potential and maintain homeostatic control. Recent evidence suggests that, in addition to these important effects, GPCR trafficking actively shapes the cellular signaling response by altering the location and timing of specific receptor‐mediated signaling reactions. Here, we review key experimental evidence underlying this expanding view, focused on GPCR signaling mediated through activation of heterotrimeric G proteins located in the cytoplasm. We then discuss lingering and emerging questions regarding the interface between GPCR signaling and trafficking.   相似文献   

17.
18.
The adenosine A2A receptor (ADORA2A) is linked to the dopamine neurotransmitter system and is also implicated in the regulation of alertness, suggesting a potential association with attention‐deficit hyperactivity disorder (ADHD) traits. Furthermore, animal studies suggest that the ADORA2A may influence ADHD‐like behavior. For that reason, the ADORA2A gene emerges as a promising candidate for studying the etiology of ADHD traits. The aim of this study was to examine the relationship between ADORA2A gene polymorphisms and ADHD traits in a large population‐based sample. This study was based on the Child and Adolescent Twin Study in Sweden (CATSS), and included 1747 twins. Attention‐deficit hyperactivity disorder traits were assessed through parental reports, and samples of DNA were collected. Associations between six single nucleotide polymorphisms (SNPs) and ADHD traits were examined, and results suggested a nominal association between ADHD traits and three of these SNPs: rs3761422, rs5751876 and rs35320474. For one of the SNPs, rs35320474, results remained significant after correction for multiple comparisons. These results indicate the possibility that the ADORA2A gene may be involved in ADHD traits. However, more studies replicating the present results are warranted before this association can be confirmed .  相似文献   

19.
The G protein‐coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR‐2, expressed in AWC and ASI amphid sensory neurons. STR‐2 function is required at temperatures of 20°C and higher on standard Escherichia coli OP50 diet. Under these conditions, this neuronal receptor also controls health span parameters and lipid droplet (LD) homeostasis in the intestine. We show that STR‐2 regulates expression of delta‐9 desaturases, fat‐5, fat‐6 and fat‐7, and of diacylglycerol acyltransferase dgat‐2. Rescue of the STR‐2 function in either AWC and ASI, or ASI sensory neurons alone, restores expression of fat‐5, dgat‐2 and restores LD stores and longevity. Rescue of stored fat levels of GPCR mutant animals to wild‐type levels, with low concentration of glucose, rescues its lifespan phenotype. In all, we show that neuronal STR‐2 GPCR facilitates control of neutral lipid levels and longevity in C. elegans.  相似文献   

20.
  1. Download : Download high-res image (214KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号