首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is a challenging task to prepare well‐dispersed and highly luminescent quantum dots (QDs) powder and a new strategy is reported in this article. Sodium carboxymethyl starch (CMS‐Na) was employed in this work to prepare the QDs–starch composite. Ultraviolet (UV) light shows that the blank starches had no fluorescence, while the QDs‐starches were highly luminescent. Scanning electron microscopy (SEM) observation shows that the QDs–starch composite has the typical particle morphology with the diameter around 200 nm. Energy dispersive X‐ray spectroscopy (EDX) results show that there are intensive tellurium (Te) and cadmium (Cd) element signals. Combined fluorescent lifetime and steady‐state spectrometer show that the QDs–starch quantum yields (QYs) increase when the QDs loading increases from 1 × 10?6 mol/g to 2 × 10?6 mol/g, but when the loadings further increase, the QYs decrease slightly. For the red colour (λem = 660 nm) QDs, the QYs can reach to as high as 28.2%, and for the other colour QDs they can also have the QYs above 22%. Time‐resolved photobleaching experiments show that the fluorescent QDs–starch composite has a half‐decay time of 40.23 s. These results indicate that the CMS‐Na is a promising QDs dispersant to obtain high QY QD composites.  相似文献   

2.
A quantum dot (QD) dispersant material was prepared using graphite oxide (GO). Luminescent films were prepared using polyvinyl alcohol as the polymer matrix. First, water‐soluble CdTe QDs were prepared by wet chemistry and GO was synthesized using a modified Hummers method. X‐Ray diffraction tests showed that the GO reflection peak [001] was 11.9°, which indicates that the d‐spacing is 0.7431 nm; atomic force microscopy showed a GO thickness of 200 nm. Fourier transform infrared spectra showed vibrations at 1624 cm?1 for the carbonyl groups, and 3260 cm?1 for the GO samples; the ‐C–O vibration was at 1320 cm?1 and ‐COOH, ?OH vibrations were at 950 cm?1. Fluorescent tests showed that pH had an impact on the QD colloidal stability. GO was neutralized before use as the host media for the GO/QDs nanocomposite. The results proved that the resultant nanocomposite is promising for use in brightness enhancement films in flexible displays.  相似文献   

3.
Uncertainty in soil carbon (C) fluxes across different land‐use transitions is an issue that needs to be addressed for the further deployment of perennial bioenergy crops. A large‐scale short‐rotation coppice (SRC) site with poplar (Populus) and willow (Salix) was established to examine the land‐use transitions of arable and pasture to bioenergy. Soil C pools, output fluxes of soil CO2, CH4, dissolved organic carbon (DOC) and volatile organic compounds, as well as input fluxes from litter fall and from roots, were measured over a 4‐year period, along with environmental parameters. Three approaches were used to estimate changes in the soil C. The largest C pool in the soil was the soil organic carbon (SOC) pool and increased after four years of SRC from 10.9 to 13.9 kg C m?2. The belowground woody biomass (coarse roots) represented the second largest C pool, followed by the fine roots (Fr). The annual leaf fall represented the largest C input to the soil, followed by weeds and Fr. After the first harvest, we observed a very large C input into the soil from high Fr mortality. The weed inputs decreased as trees grew older and bigger. Soil respiration averaged 568.9 g C m?2 yr?1. Leaching of DOC increased over the three years from 7.9 to 14.5 g C m?2. The pool‐based approach indicated an increase of 3360 g C m?2 in the SOC pool over the 4‐year period, which was high when compared with the ?27 g C m?2 estimated by the flux‐based approach and the ?956 g C m?2 of the combined eddy‐covariance + biometric approach. High uncertainties were associated to the pool‐based approach. Our results suggest using the C flux approach for the assessment of the short‐/medium‐term SOC balance at our site, while SOC pool changes can only be used for long‐term C balance assessments.  相似文献   

4.
The net carbon uptake rate and net production rate of mycosporine‐like amino acids (MAAs) were measured in phytoplankton from 2 different melt ponds (MPs; closed and open type pond) in the western Arctic Ocean using a 13C stable isotope tracer technique. The Research Vessel Araon visited ice‐covered western‐central basins situated at 82°N and 173°E in the summer of 2012, when Arctic sea ice declined to a record minimum. The average net carbon uptake rate of the phytoplankton in polycarbonate (PC) bottles in the closed MP was 3.24 mg C · m?3 · h?1 (SD = ±1.12 mg C · m?3 · h?1), while that in the open MP was 1.3 mg C · m?3 · h?1 (SD = ±0.05 mg C · m?3 · h?1). The net production rate of total MAAs in incubated PC bottles was highest (1.44 (SD = ±0.24) ng C · L?1 · h?1) in the open MP and lowest (0.05 (SD = ±0.003) ng C · L?1 · h?1) in the closed MP. The net production rate of shinorine and palythine in incubated PC bottles at the open MP presented significantly high values 0.76 (SD = ±0.12) ng C · L?1 · h?1and 0.53 (SD = ±0.06) ng C · L?1 · h?1. Our results showed that high net production rate of MAAs in the open MP was enhanced by a combination of osmotic and UVR stress and that in situ net production rates of individual MAA can be determined using 13C tracer in MPs in Arctic sea ice.  相似文献   

5.
Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land‐use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well‐determined subcatchments (total size 174.5 km2), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land‐use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m?2(catchment) yr?1, which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m?2 yr?1); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m?2 yr?1). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m?2 yr?1 and 0.1 ± 0.04 g C m?2 yr?1, respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.  相似文献   

6.
Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendments remains uncertain. Here, we used a stable carbon isotope (δ13C) approach to estimate the possible biochar effects on native soil C‐mineralization compared with various BW additions and potential carbon sequestration. The results show that immediately after application, BC suppresses and then increases C‐mineralization, causing a loss of 0.14–7.17 mg‐CO2–C g?1‐C compared to the control (0.24–1.86 mg‐CO2–C g?1‐C) over 1–120 days. Negative priming was observed for BC compared to various BW amendments (?10.22 to ?23.56 mg‐CO2–C g?1‐soil‐C); however, it was trivially positive relative to that of the control (8.64 mg‐CO2–C g?1‐soil‐C). Furthermore, according to the residual carbon and δ13C signature of postexperimental soil carbon, BC‐C significantly increased (P < 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative CO2–C emissions, relative priming effects, and carbon storage indicate that BC reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C (4.92 mg‐C g?1‐soil) in BC, the reduced microbial activity, and the sorption of labile organic carbon (OC) onto BC particles.  相似文献   

7.
Despite the perceived importance of exudation to forest ecosystem function, few studies have attempted to examine the effects of elevated temperature and nutrition availability on the rates of root exudation and associated microbial processes. In this study, we performed an experiment in which in situ exudates were collected from Picea asperata seedlings that were transplanted in disturbed soils exposed to two levels of temperature (ambient temperature and infrared heater warming) and two nitrogen levels (unfertilized and 25 g N m?2 a?1). Here, we show that the trees exposed to an elevated temperature increased their exudation rates I (μg C g?1 root biomass h?1), II (μg C cm?1 root length h?1) and III (μg C cm?2 root area h?1) in the unfertilized plots. The altered morphological and physiological traits of the roots exposed to experimental warming could be responsible for this variation in root exudation. Moreover, these increases in root‐derived C were positively correlated with the microbial release of extracellular enzymes involved in the breakdown of organic N (R2 = 0.790; P = 0.038), which was coupled with stimulated microbial activity and accelerated N transformations in the unfertilized soils. In contrast, the trees exposed to both experimental warming and N fertilization did not show increased exudation rates or soil enzyme activity, indicating that the stimulatory effects of experimental warming on root exudation depend on soil fertility. Collectively, our results provide preliminary evidence that an increase in the release of root exudates into the soil may be an important physiological adjustment by which the sustained growth responses of plants to experimental warming may be maintained via enhanced soil microbial activity and soil N transformation. Accordingly, the underlying mechanisms by which plant root‐microbe interactions influence soil organic matter decomposition and N cycling should be incorporated into climate‐carbon cycle models to determine reliable estimates of long‐term C storage in forests.  相似文献   

8.
Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2) and CH4] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m?2 yr?1 during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m?2 yr?1). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (?78.8 ± 33.6 g C m?2 yr?1), near CO2‐neutral in 2012 (29.7 ± 37.2 g C m?2 yr?1), and a CO2 source in 2013 (92.9 ± 28.0 g C m?2 yr?1). The CH4 emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m?2 yr?1. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m?2 yr?1, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m?2 yr?1 to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.  相似文献   

9.
The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest‐steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha?1, which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha?1) and total belowground carbon density (149 Mg C ha?1) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha?1, compared with 215 Mg C ha?1 in the forest interior. Carbon stock density in grasslands was 144 Mg C ha?1. Analysis of satellite imagery of the highly fragmented forest area in the forest‐steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km2, and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5?1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming.  相似文献   

10.
Bioenergy crops are expected to provide biomass to replace fossil resources and reduce greenhouse gas emissions. In this context, changes in soil organic carbon (SOC) stocks are of primary importance. The aim of this study was to measure changes in SOC stocks in bioenergy cropping systems comparing perennial (Miscanthus × giganteus and switchgrass), semi‐perennial (fescue and alfalfa), and annual (sorghum and triticale) crops, all established after arable crops. The soil was sampled at the start of the experiment and 5 or 6 years later. SOC stocks were calculated at equivalent soil mass, and δ13C measurements were used to calculate changes in new and old SOC stocks. Crop residues found in soil at the time of SOC measurements represented 3.5–7.2 t C ha?1 under perennial crops vs. 0.1–0.6 t C ha?1 for the other crops. During the 5‐year period, SOC concentrations under perennial crops increased in the surface layer (0–5 cm) and slightly declined in the lower layers. Changes in δ13C showed that C inputs were mainly located in the 0–18 cm layer. In contrast, SOC concentrations increased over time under semi‐perennial crops throughout the old ploughed layer (ca. 0–33 cm). SOC stocks in the old ploughed layer increased significantly over time under semi‐perennials with a mean increase of 0.93 ± 0.28 t C ha?1 yr?1, whereas no change occurred under perennial or annual crops. New SOC accumulation was higher for semi‐perennial than for perennial crops (1.50 vs. 0.58 t C ha?1 yr?1, respectively), indicating that the SOC change was due to a variation in C input rather than a change in mineralization rate. Nitrogen fertilization rate had no significant effect on SOC stocks. This study highlights the interest of comparing SOC changes over time for various cropping systems.  相似文献   

11.
Afforestation with short‐rotation coppice (SRC) willow plantations for the purpose of producing bioenergy feedstock was contemplated as one potential climate change mitigation option. The objectives of this study were to assess the magnitude of this mitigation potential by addressing: (i) the land area potentially available for SRC systems in the province of Saskatchewan, Canada; (ii) the potential biomass yields of SRC plantations; and (iii) the carbon implications from such a large‐scale afforestation program. Digital soils and land‐use data were used to identify, map, and group into clusters of similar polygons 2.12 million hectares (Mha) of agriculturally marginal land that was potentially suitable for willow in the Boreal Plains and Prairies ecozones in Saskatchewan. The Physiological Principles in Predicting Growth (3PG) model was calibrated with data from SRC experiments in Saskatchewan, to quantify potential willow biomass yields, and the Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3), was used to simulate stand and landscape‐level C fluxes and stocks. Short‐rotation willow plantations managed in 3 year rotations for seven consecutive harvests (21 years) after coppicing at Year 1 produced about 12 Mg ha?1 yr?1 biomass. The more significant contribution to the C cycle was the cumulative harvest. After 44 years, the potential average cumulative harvested biomass C in the Prairies was 244 Mg C ha?1 (5.5 Mg C ha?1 yr?1) about 20% higher than the average for the Boreal Plains, 203 Mg C ha?1 (4.6 Mg C ha?1 yr?1). This analysis did not consider afforestation costs, rate of establishment of willow plantations, and other constraints, such as drought and disease effects on biomass yield. The results must therefore be interpreted as a biophysical mitigation potential with the technical and economic potential being both lower than our estimates. Nevertheless, short‐rotation bioenergy plantations offer one potential mitigation option to reduce the rate of CO2 accumulation in the earth's atmosphere and further research is needed to operationalise such a mitigation effort.  相似文献   

12.
Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well‐informed, land‐use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km2 (767–937 m asl.) from the surface down to the k‐Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using 14C dating) and δ13C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C‐sequestration rates. The mean total C stock of all six sites was 232 Mg C ha?1 (28–417 Mg C ha?1), which equates to a soil C sequestration rate of 32 kg C ha?1 yr?1 over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha?1 yr?1, respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on δ13C abundance. We conclude that the seminatural, C4‐dominated grassland system serves as an important C sink, and worthy of future conservation.  相似文献   

13.
Native perennial bioenergy crops can mitigate greenhouse gases (GHG) by displacing fossil fuels with renewable energy and sequestering atmospheric carbon (C) in soil and roots. The relative contribution of root C to net GHG mitigation potential has not been compared in perennial bioenergy crops ranging in species diversity and N fertility. We measured root biomass, C, nitrogen (N), and soil organic carbon (SOC) in the upper 90 cm of soil for five native perennial bioenergy crops managed with and without N fertilizer. Bioenergy crops ranged in species composition and were annually harvested for 6 (one location) and 7 years (three locations) following the seeding year. Total root biomass was 84% greater in switchgrass (Panicum virgatum L.) and a four‐species grass polyculture compared to high‐diversity polycultures; the difference was driven by more biomass at shallow soil depth (0–30 cm). Total root C (0–90 cm) ranged from 3.7 Mg C ha?1 for a 12‐species mixture to 7.6 Mg C ha?1 for switchgrass. On average, standing root C accounted for 41% of net GHG mitigation potential. After accounting for farm and ethanol production emissions, net GHG mitigation potential from fossil fuel offsets and root C was greatest for switchgrass (?8.4 Mg CO2e ha?1 yr?1) and lowest for high‐diversity mixtures (?4.5 Mg CO2e ha?1 yr?1). Nitrogen fertilizer did not affect net GHG mitigation potential or the contribution of roots to GHG mitigation for any bioenergy crop. SOC did not change and therefore did not contribute to GHG mitigation potential. However, associations among SOC, root biomass, and root C : N ratio suggest greater long‐term C storage in diverse polycultures vs. switchgrass. Carbon pools in roots have a greater effect on net GHG mitigation than SOC in the short‐term, yet variation in root characteristics may alter patterns in long‐term C storage among bioenergy crops.  相似文献   

14.
This study investigates protocols to evaluate cold tolerance thresholds for overwintering rhizomes of perennial bioenergy grasses. Protocols examined include the temperature at which ice formation occurs, cooling rate, incubation time at the treatment temperature, and the electrolyte leakage (EL) method to assess mortality thresholds. Using these protocols, we assessed low temperature injury in two genotypes of Miscanthus and two genotypes of lowland switchgrass (Panicum virgatum). Ice formed near ?1 C in the rhizomes cooled at 1 C h?1, but at variable temperatures at cooling rates of 3  and 5 C h?1. Rhizome temperature followed chamber temperature at a cooling rate of 1 C h?1, whereas at faster cooling rates, there was a lag in rhizome temperature that affected treatment exposure time. A 1 C h?1 cooling rate is thus suitable. In rhizomes incubated for <4 h at the treatment temperature, EL values were variable, while there was no change in EL when samples were incubated 4–20 h. A continuous, steady rate of cooling at 1 C h?1 demonstrated the Miscanthus and lowland switchgrass varieties exhibited lethal levels of electrolyte leakage below ?6 C. Continuous cooling does not allow for subzero acclimation and reflects thermal tolerances of sampled tissue in situ. To allow for maximum acclimation at subzero temperatures, a prolonged, staged‐cooling procedure was adopted. This procedure showed diploid Miscanthus rhizomes could acclimate and adjust their tolerance limit to ?12 C, while a triploid Illinois line showed little acclimation and was still killed below ?6 C.  相似文献   

15.
Tropical peatlands cover an estimated 440 000 km2 (~10% of global peatland area) and are significant in the global carbon cycle by storing about 40–90 Gt C in peat. Over the past several decades, tropical peatlands have experienced high rates of deforestation and conversion, which is often associated with lowering the water table and peat burning, releasing large amounts of carbon stored in peat to the atmosphere. We present the first model of long‐term carbon accumulation in tropical peatlands by modifying the Holocene Peat Model (HPM), which has been successfully applied to northern temperate peatlands. Tropical HPM (HPMTrop) is a one‐dimensional, nonlinear, dynamic model with a monthly time step that simulates peat mass remaining in annual peat cohorts over millennia as a balance between monthly vegetation inputs (litter) and monthly decomposition. Key model parameters were based on published data on vegetation characteristics, including net primary production partitioned into leaves, wood, and roots; and initial litter decomposition rates. HPMTrop outputs are generally consistent with field observations from Indonesia. Simulated long‐term carbon accumulation rates for 11 000‐year‐old inland, and 5 000‐year‐old coastal peatlands were about 0.3 and 0.59 Mg C ha?1 yr?1, and the resulting peat carbon stocks at the end of the 11 000‐year and 5 000‐year simulations were 3300 and 2900 Mg C ha?1, respectively. The simulated carbon loss caused by coastal peat swamp forest conversion into oil palm plantation with periodic burning was 1400 Mg C ha?1 over 100 years, which is equivalent to ~2900 years of C accumulation in a hectare of coastal peatlands.  相似文献   

16.
Reforestation has large potential for mitigating climate change through carbon sequestration. Native mixed‐species plantings have a higher potential to reverse biodiversity loss than do plantations of production species, but there are few data on their capacity to store carbon. A chronosequence (5–45 years) of 36 native mixed‐species plantings, paired with adjacent pastures, was measured to investigate changes to stocks among C pools following reforestation of agricultural land in the medium rainfall zone (400–800 mm yr?1) of temperate Australia. These mixed‐species plantings accumulated 3.09 ± 0.85 t C ha?1 yr?1 in aboveground biomass and 0.18 ± 0.05 t C ha?1 yr?1 in plant litter, reaching amounts comparable to those measured in remnant woodlands by 20 years and 36 years after reforestation respectively. Soil C was slower to increase, with increases seen only after 45 years, at which time stocks had not reached the amounts found in remnant woodlands. The amount of trees (tree density and basal area) was positively associated with the accumulation of carbon in aboveground biomass and litter. In contrast, changes to soil C were most strongly related to the productivity of the location (a forest productivity index and soil N content in the adjacent pasture). At 30 years, native mixed‐species plantings had increased the stability of soil C stocks, with higher amounts of recalcitrant C and higher C : N ratios than their adjacent pastures. Reforestation with native mixed‐species plantings did not significantly change the availability of macronutrients (N, K, Ca, Mg, P, and S) or micronutrients (Fe, B, Mn, Zn, and Cu), content of plant toxins (Al, Si), acidity, or salinity (Na, electrical conductivity) in the soil. In this medium rainfall area, native mixed‐species plantings provided comparable rates of C sequestration to local production species, with the probable additional benefit of providing better quality habitat for native biota. These results demonstrate that reforestation using native mixed‐species plantings is an effective alternative for carbon sequestration to standard monocultures of production species in medium rainfall areas of temperate continental climates, where they can effectively store C, convert C into stable pools and provide greater benefits for biodiversity.  相似文献   

17.
An FT‐IR spectroscopic method was developed for the simultaneous quantitative analysis of biomacromolecular components in biomass, originating from various microbiological sources. For the determination of protein, lipid and carbohydrate content, creatine phosphokinase, egg phosphatidyl choline and starch hydrolysate were chosen as external standards. This selection was based on spectral similarity and ease of availability. Protein content was based on the area under the amide II band profile around 1,545 cm?1. Because of the heterogeneous lipid composition in the different species, lipid content was determined using integration over the C? H stretching vibrational population between 2,984 and 2,780 cm?1. Carbohydrate content was determined using integration over a C? O and C? O? C stretching band area between 1,180 and 1,133 cm?1. Linear regression analysis provided three calibration lines, according to which biomasses from ten species were analyzed. This approach showed good intra‐batch reproducibility. With this method we could demonstrate good reproducibility between batches of the same species with similar growth conditions while large differences in biomass composition were observed between the various species. Protein content as determined by FT‐IR spectroscopy compared well with the results obtained from elemental analysis. Biotechnol. Bioeng. 2009;103: 123–129. © 2008 Wiley Periodicals, Inc.  相似文献   

18.
Analysis of growth and biomass turnover in natural forests of Eucalyptus regnans, the world's tallest angiosperm, reveals it is also the world's most productive forest type, with fire disturbance an important mediator of net primary productivity (NPP). A comprehensive empirical database was used to calculate the averaged temporal pattern of NPP from regeneration to 250 years age. NPP peaks at 23.1 ± 3.8 (95% interquantile range) Mg C ha?1 year?1 at age 14 years, and declines gradually to about 9.2 ± 0.8 Mg C ha?1 year?1 at 130 years, with an average NPP over 250 years of 11.4 ± 1.1 Mg C ha?1 year?1, a value similar to the most productive temperate and tropical forests around the world. We then applied the age‐class distribution of E. regnans resulting from relatively recent historical fires to estimate current NPP for the forest estate. Values of NPP were 40% higher (13 Mg C ha?1 year?1) than if forests were assumed to be at maturity (9.2 Mg C ha?1 year?1). The empirically derived NPP time series for the E. regnans estate was then compared against predictions from 21 global circulation models, showing that none of them had the capacity to simulate a post‐disturbance peak in NPP, as found in E. regnans. The potential importance of disturbance impacts on NPP was further tested by applying a similar approach to the temperate forests of conterminous United States and of China. Allowing for the effects of disturbance, NPP summed across both regions was on average 11% (or 194 Tg C/year) greater than if all forests were assumed to be in a mature state. The results illustrate the importance of accounting for past disturbance history and growth stage when estimating forest primary productivity, with implications for carbon balance modelling at local to global scales.  相似文献   

19.
Increase of belowground C allocation by plants under global warming or elevated CO2 may promote decomposition of soil organic carbon (SOC) by priming and strongly affects SOC dynamics. The specific effects by priming of SOC depend on the amount and frequency of C inputs. Most previous priming studies have investigated single C additions, but they are not very representative for litterfall and root exudation in many terrestrial ecosystems. We evaluated effects of 13C‐labeled glucose added to soil in three temporal patterns: single, repeated, and continuous on dynamics of CO2 and priming of SOC decomposition over 6 months. Total and 13C labeled CO2 were monitored to analyze priming dynamics and net C balance between SOC loss caused by priming and the retention of added glucose‐C. Cumulative priming ranged from 1.3 to 5.5 mg C g?1 SOC in the subtropical, and from ?0.6 to 5.5 mg C g?1 SOC in the tropical soils. Single addition induced more priming than repeated and continuous inputs. Therefore, single additions of high substrate amounts may overestimate priming effects over the short term. The amount of added glucose C remaining in soil after 6 months (subtropical: 8.1–11.2 mg C g?1 SOC or 41‐56% of added glucose; tropical: 8.7–15.0 mg C g?1 SOC or 43–75% of glucose) was substantially higher than the net C loss due to SOC decomposition including priming effect. This overcompensation of C losses was highest with continuous inputs and lowest with single inputs. Therefore, raised labile organic C input to soils by higher plant productivity will increase SOC content even though priming accelerates decomposition of native SOC. Consequently, higher continuous input of C belowground by plants under warming or elevated CO2 can increase C stocks in soil despite accelerated C cycling by priming in soils.  相似文献   

20.
Floodplain lakes may play an important role in the cycling of organic matter at the landscape scale. For those lakes on the middle and lower reaches of the Yangtze (MLY) floodplain which are subjected to intense anthropogenic disturbance, carbon burial rates should, theoretically, be substantial due to the high nutrient input, increased primary production and high sediment accumulation rates. There are more than 600 lakes >1 km2 on the Yangtze floodplain including 18 lakes >100 km2 and most are shallow and eutrophic. 210Pb‐dated cores were combined with total organic carbon (TOC) analyses to determine annual C accumulation rates (C AR; g C m?2 yr?1) and the total C stock (since ~1850). The sediment TOC content is relatively low with an average <2% in most lakes. C AR ranged from ~5 to 373 g C m?2 yr?1, resulting in C standing stocks of 0.60–15.3 kg C m?2 (mean: ~5 kg C m?2) since ~1850. A multicore study of Chaohu lake (770 km2) indicated that spatial variability of C burial was not a significant problem for regional upscaling. The possible effect of changes in lake size and catchment land use on C burial was examined at Taibai lake and indicated that lake shrinkage and declining arable agriculture had limited effects on C AR. The organic C standing stock in individual lakes is, however, significantly dependent on lake size, allowing a simple linear scaling for all the MLY lakes. Total regional C sequestration was ~80 Tg C since ~1850, equivalent to ~11% of C sequestration by soils, but in ~3% of the land area. Shallow lakes from MLY are a substantial regional C sink, although strong mineralization occurs due to their shallow nature and their role as C sinks is threatened due to lake drainage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号