首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adenosine deaminases acting on RNA (ADARs) are best known for altering the coding sequences of mRNA through RNA editing, as in the GluR‐B Q/R site. ADARs have also been shown to affect RNA interference (RNAi) and microRNA processing by deamination of specific adenosines to inosine. Here, we show that ADAR proteins can affect RNA processing independently of their enzymatic activity. We show that ADAR2 can modulate the processing of mir‐376a2 independently of catalytic RNA editing activity. In addition, in a Drosophila assay for RNAi deaminase‐inactive ADAR1 inhibits RNAi through the siRNA pathway. These results imply that ADAR1 and ADAR2 have biological functions as RNA‐binding proteins that extend beyond editing per se and that even genomically encoded ADARs that are catalytically inactive may have such functions.  相似文献   

2.
ADAR2 catalyses the deamination of adenosine to inosine at the GluR2 Q/R site in the pre-mRNA encoding the critical subunit of AMPA receptors. Among ADAR2 substrates this is the vital one as editing at this position is indispensable for normal brain function. However, the regulation of ADAR2 post-translationally remains to be elucidated. We demonstrate that the phosphorylation-dependent prolyl-isomerase Pin1 interacts with ADAR2 and is a positive regulator required for the nuclear localization and stability of ADAR2. Pin1(-/-) mouse embryonic fibroblasts show mislocalization of ADAR2 in the cytoplasm and reduced editing at the GluR2 Q/R and R/G sites. The E3 ubiquitin ligase WWP2 plays a negative role by binding to ADAR2 and catalysing its ubiquitination and subsequent degradation. Therefore, ADAR2 protein levels and catalytic activity are coordinately regulated in a positive manner by Pin1 and negatively by WWP2 and this may have downstream effects on the function of GluR2. Pin1 and WWP2 also regulate the large subunit of RNA Pol II, so these proteins may also coordinately regulate other key cellular proteins.  相似文献   

3.
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosine (A) to inosine (I) in nuclear‐encoded RNAs and viral RNAs. The activity of ADARs has been demonstrated to be essential in mammals and serves to fine‐tune different proteins and modulate many molecular pathways. Recent findings have shown that ADAR activity is altered in many pathological tissues. Moreover, it has been shown that modulation of RNA editing is important for cell proliferation and migration, and has a protective effect on ischaemic insults. This review summarises available recent knowledge on A‐to‐I RNA editing and ADAR enzymes, with particular attention given to the emerging role played by these enzymes in cancer, some infectious diseases and immune‐mediated disorders.  相似文献   

4.
Zika virus (ZIKV) is a mosquito‐transmitted flavivirus, linked to microcephaly and fetal death in humans. Here, we investigate whether host‐mediated RNA editing of adenosines (ADAR) plays a role in the molecular evolution of ZIKV. Using complete coding sequences for the ZIKV polyprotein, we show that potential ADAR substitutions are underrepresented at the ADAR‐resistant GA dinucleotides of both the positive and negative strands, that these changes are spatially and temporally clustered (as expected of ADAR editing) for three branches of the viral phylogeny, and that ADAR mutagenesis can be linked to its codon usage. Furthermore, resistant GA dinucleotides are enriched on the positive (but not negative) strand, indicating that the former is under stronger purifying selection than the latter. ADAR editing also affects the evolution of the rhabdovirus sigma. Our study now documents that host ADAR editing is a mutation and evolutionary force of positive‐ as well as negative‐strand RNA viruses.  相似文献   

5.
6.
7.
RNA编辑是DNA转录为RNA后遗传信息发生改变的一种方式.A-to-IRNA编辑酶ADAR1(adenosinedeaminasethatactsonRNA1)具有将pre-mRNA中特定的腺嘌呤核苷转变为次黄嘌呤核苷的功能.通过RT-PCR技术从小鼠肝脏组织中克隆了小鼠A-to-IRNA编辑酶ADAR1的4种剪切体,采用荧光示踪技术研究其在细胞内定位,利用Bac-to-Bac杆状病毒表达系统构建了ADAR1重组杆状病毒并在sf9昆虫细胞内将其进行了表达,最后对表达产物进行了活性鉴定.结果发现,小鼠ADAR1在小鼠肝脏组织中主要以4种剪切方式存在,分别命名为ADAR1-La\Lb和ADAR1-Sa\Sb.这4种ADAR1剪切体在细胞内分布有着明显的区别,ADAR1-La\Lb主要分布于胞浆,而ADAR1-Sa\Sb主要分布于细胞核及核仁.Bac-to-Bac杆状病毒表达系统表达的4种ADAR1剪切体蛋白的双链RNA编辑活性明显不同,提示各个ADAR1剪切体的底物识别和特异性RNA编辑功能可能有所不同.ADAR1剪切体的克隆和表达以及它们在细胞内定位和编辑活性的差异的发现为进一步研究其结构和功能的关系及寻找它们的新底物奠定了基础.  相似文献   

8.
9.
The involvement of A to I RNA editing in antiviral responses was first indicated by the observation of genomic hyper-mutation for several RNA viruses in the course of persistent infections. However, in only a few cases an antiviral role was ever demonstrated and surprisingly, it turns out that ADARs - the RNA editing enzymes - may have a prominent pro-viral role through the modulation/down-regulation of the interferon response. A key role in this regulatory function of RNA editing is played by ADAR1, an interferon inducible RNA editing enzyme. A distinguishing feature of ADAR1, when compared with other ADARs, is the presence of a Z-DNA binding domain, Zalpha. Since the initial discovery of the specific and high affinity binding of Zalpha to CpG repeats in a left-handed helical conformation, other proteins, all related to the interferon response pathway, were shown to have similar domains throughout the vertebrate lineage. What is the biological function of this domain family remains unclear but a significant body of work provides pieces of a puzzle that points to an important role of Zalpha domains in the recognition of foreign nucleic acids in the cytoplasm by the innate immune system. Here we will provide an overview of our knowledge on ADAR1 function in interferon response with emphasis on Zalpha domains.  相似文献   

10.
Adenosine deaminases that act on RNA (ADAR) catalyze adenosine to inosine (A-to-I) editing in double-stranded RNA (dsRNA) substrates. Inosine is read as guanosine by the translation machinery; therefore A-to-I editing events in coding sequences may result in recoding genetic information. Whereas vertebrates have two catalytically active enzymes, namely ADAR1 and ADAR2, Drosophila has a single ADAR protein (dADAR) related to ADAR2. The structural determinants controlling substrate recognition and editing of a specific adenosine within dsRNA substrates are only partially understood. Here, we report the solution structure of the N-terminal dsRNA binding domain (dsRBD) of dADAR and use NMR chemical shift perturbations to identify the protein surface involved in RNA binding. Additionally, we show that Drosophila ADAR edits the R/G site in the mammalian GluR-2 pre-mRNA which is naturally modified by both ADAR1 and ADAR2. We then constructed a model showing how dADAR dsRBD1 binds to the GluR-2 R/G stem-loop. This model revealed that most side chains interacting with the RNA sugar-phosphate backbone need only small displacement to adapt for dsRNA binding and are thus ready to bind to their dsRNA target. It also predicts that dADAR dsRBD1 would bind to dsRNA with less sequence specificity than dsRBDs of ADAR2. Altogether, this study gives new insights into dsRNA substrate recognition by Drosophila ADAR.  相似文献   

11.
12.
The pentatricopeptide repeat (PPR) protein family, which is particularly prevalent in plants, includes many sequence‐specific RNA‐binding proteins involved in all aspects of organelle RNA metabolism, including RNA stability, processing, editing and translation. PPR proteins consist of a tandem array of 2‐30 PPR motifs, each of which aligns to one nucleotide in the RNA target. The amino acid side chains at two or three specific positions in each motif confer nucleotide specificity in a predictable and programmable manner. Thus, PPR proteins appear to provide an extremely promising opportunity to create custom RNA‐binding proteins with tailored specificity. We summarize recent progress in understanding RNA recognition by PPR proteins, with a particular focus on potential applications of PPR‐based tools for manipulating RNA, and on the challenges that remain to be overcome before these tools may be routinely used by the scientific community.  相似文献   

13.
14.
15.
16.
One type of RNA editing involves the conversion of adenosine residues into inosine in double-stranded RNA through the action of adenosine deaminases acting on RNA (ADAR). A-to-I RNA editing of the coding sequence could result in synthesis of proteins not directly encoded in the genome. ADAR edits also non-coding sequences of target RNAs, such as introns and 3'-untranslated regions, which may affect splicing, translation, and mRNA stability. Three mammalian ADAR gene family members (ADAR1-3) have been identified. Here we investigated phenotypes of mice homozygous for ADAR1 null mutation. Although live ADAR1-/- embryos with normal gross appearance could be recovered up to E11.5, widespread apoptosis was detected in many tissues. Fibroblasts derived from ADAR1-/- embryos were also prone to apoptosis induced by serum deprivation. Our results demonstrate an essential requirement for ADAR1 in embryogenesis and suggest that it functions to promote survival of numerous tissues by editing one or more double-stranded RNAs required for protection against stress-induced apoptosis.  相似文献   

17.
18.
ADARs are adenosine deaminases responsible for RNA-editing reactions that occur within duplex RNA. Currently little is known regarding the nature of the protein-RNA interactions that lead to site-selective adenosine deamination. We previously reported that ADAR2 induced changes in 2-aminopurine fluorescence of a modified substrate, consistent with a base-flipping mechanism. Additional data have been obtained using full-length ADAR2 and a protein comprising only the RNA binding domain (RBD) of ADAR2. The increase in 2-aminopurine fluorescence is specific to the editing site and dependent on the presence of the catalytic domain. Hydroxyl radical footprinting demonstrates that the RBD protects a region of the RNA duplex around the editing site, suggesting a significant role for the RBD in identifying potential ADAR2 editing sites. Nucleotides near the editing site on the non-edited strand become hypersensitive to hydrolytic cleavage upon binding of ADAR2 RBD. Therefore, the RBD may assist base flipping by increasing the conformational flexibility of nucleotides in the duplex adjacent to its binding site. In addition, an increase in tryptophan fluorescence is observed when ADAR2 binds duplex RNA, suggesting a conformational change in the catalytic domain of the enzyme. Furthermore, acrylamide quenching experiments indicate that RNA binding creates heterogeneity in the solvent accessibility of ADAR2 tryptophan residues, with one out of five tryptophans more solvent-accessible in the ADAR2.RNA complex.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号