首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Probing the architecture, mechanism, and dynamics of genome folding is fundamental to our understanding of genome function in homeostasis and disease. Most chromosome conformation capture studies dissect the genome architecture with population‐ and time‐averaged snapshots and thus have limited capabilities to reveal 3D nuclear organization and dynamics at the single‐cell level. Here, we discuss emerging imaging techniques ranging from light microscopy to electron microscopy that enable investigation of genome folding and dynamics at high spatial and temporal resolution. Results from these studies complement genomic data, unveiling principles underlying the spatial arrangement of the genome and its potential functional links to diverse biological activities in the nucleus.  相似文献   

3.
The greenfin horse‐faced filefish, Thamnaconus septentrionalis, is a valuable commercial fish species that is widely distributed in the Indo‐West Pacific Ocean. This fish has characteristic blue–green fins, rough skin and a spine‐like first dorsal fin. Thamnaconus septentrionalis is of conservation concern because its population has declined sharply, and it is an important marine aquaculture fish species in China. Genomic resources for the filefish are lacking, and no reference genome has been released. In this study, the first chromosome‐level genome of T. septentrionalis was constructed using nanopore sequencing and Hi‐C technology. A total of 50.95 Gb polished nanopore sequences were generated and were assembled into a 474.31‐Mb genome, accounting for 96.45% of the estimated genome size of this filefish. The assembled genome contained only 242 contigs, and the achieved contig N50 was 22.46 Mb, a surprisingly high value among all sequenced fish species. Hi‐C scaffolding of the genome resulted in 20 pseudochromosomes containing 99.44% of the total assembled sequences. The genome contained 67.35 Mb of repeat sequences, accounting for 14.2% of the assembly. A total of 22,067 protein‐coding genes were predicted, 94.82% of which were successfully annotated with putative functions. Furthermore, a phylogenetic tree was constructed using 1,872 single‐copy orthologous genes, and 67 unique gene families were identified in the filefish genome. This high‐quality assembled genome will be a valuable resource for a range of future genomic, conservation and breeding studies of T. septentrionalis.  相似文献   

4.
The red‐spotted grouper Epinephelus akaara (E. akaara) is one of the most economically important marine fish in China, Japan and South‐East Asia and is a threatened species. The species is also considered a good model for studies of sex inversion, development, genetic diversity and immunity. Despite its importance, molecular resources for E. akaara remain limited and no reference genome has been published to date. In this study, we constructed a chromosome‐level reference genome of E. akaara by taking advantage of long‐read single‐molecule sequencing and de novo assembly by Oxford Nanopore Technology (ONT) and Hi‐C. A red‐spotted grouper genome of 1.135 Gb was assembled from a total of 106.29 Gb polished Nanopore sequence (GridION, ONT), equivalent to 96‐fold genome coverage. The assembled genome represents 96.8% completeness (BUSCO) with a contig N50 length of 5.25 Mb and a longest contig of 25.75 Mb. The contigs were clustered and ordered onto 24 pseudochromosomes covering approximately 95.55% of the genome assembly with Hi‐C data, with a scaffold N50 length of 46.03 Mb. The genome contained 43.02% repeat sequences and 5,480 noncoding RNAs. Furthermore, combined with several RNA‐seq data sets, 23,808 (99.5%) genes were functionally annotated from a total of 23,923 predicted protein‐coding sequences. The high‐quality chromosome‐level reference genome of E. akaara was assembled for the first time and will be a valuable resource for molecular breeding and functional genomics studies of red‐spotted grouper in the future.  相似文献   

5.
6.
The Tetraodontidae family are known to have relatively small and compact genomes compared to other vertebrates. The obscure puffer fish Takifugu obscurus is an anadromous species that migrates to freshwater from the sea for spawning. Thus the euryhaline characteristics of T. obscurus have been investigated to gain understanding of their survival ability, osmoregulation, and other homeostatic mechanisms in both freshwater and seawater. In this study, a high quality chromosome‐level reference genome for T. obscurus was constructed using long‐read Pacific Biosciences (PacBio) Sequel sequencing and a Hi‐C‐based chromatin contact map platform. The final genome assembly of T. obscurus is 381 Mb, with a contig N50 length of 3,296 kb and longest length of 10.7 Mb, from a total of 62 Gb of raw reads generated using single‐molecule real‐time sequencing technology from a PacBio Sequel platform. The PacBio data were further clustered into chromosome‐scale scaffolds using a Hi‐C approach, resulting in a 373 Mb genome assembly with a contig N50 length of 15.2 Mb and and longest length of 28 Mb. When we directly compared the 22 longest scaffolds of T. obscurus to the 22 chromosomes of the tiger puffer Takifugu rubripes, a clear one‐to‐one orthologous relationship was observed between the two species, supporting the chromosome‐level assembly of T. obscurus. This genome assembly can serve as a valuable genetic resource for exploring fugu‐specific compact genome characteristics, and will provide essential genomic information for understanding molecular adaptations to salinity fluctuations and the evolution of osmoregulatory mechanisms.  相似文献   

7.
Onychostoma macrolepis is an emerging commercial cyprinid fish species. It is a model system for studies of sexual dimorphism and genome evolution. Here, we report the chromosome‐level assembly of the O.macrolepis genome obtained from the integration of nanopore long‐read sequencing with physical maps produced using Bionano and Hi‐C technology. A total of 87.9 Gb of nanopore sequence provided approximately 100‐fold coverage of the genome. The preliminary genome assembly was 883.2 Mb in size with a contig N50 size of 11.2 Mb. The 969 corrected contigs obtained from Bionano optical mapping were assembled into 853 scaffolds and produced an assembly of 886.5 Mb with a scaffold N50 of 16.5 Mb. Finally, using the Hi‐C data, 881.3 Mb (99.4% of genome) in 526 scaffolds were anchored and oriented in 25 chromosomes ranging in size from 25.27 to 56.49 Mb. In total, 24,770 protein‐coding genes were predicted in the genome, and ~96.85% of the genes were functionally annotated. The annotated assembly contains 93.3% complete genes from the BUSCO reference set. In addition, we identified 409 Mb (46.23% of the genome) of repetitive sequence, and 11,213 non‐coding RNAs, in the genome. Evolutionary analysis revealed that O. macrolepis diverged from common carp approximately 24.25 million years ago. The chromosomes of O. macrolepis showed an unambiguous correspondence to the chromosomes of zebrafish. The high‐quality genome assembled in this work provides a valuable genomic resource for further biological and evolutionary studies of O. macrolepis.  相似文献   

8.
9.
杨科  薛征  吕湘 《遗传》2020,(1):32-44
真核细胞中的染色质DNA高度折叠形成复杂的三维结构,其空间组织方式对精准调控基因的表达和细胞发挥正常功能都起着重要的作用。细胞终末分化成熟过程中形态及基因表达谱常发生显著改变,同时伴随着明显的基因组三维结构变化。本文在简单介绍三维基因组多层次组织结构(染色质领域、A/B区室、拓扑相关结构域和成环构象等)基础上,重点综述了细胞终末分化过程中三维基因组结构变化与功能调控方面的研究进展,并探讨了当前三维基因组研究在解析细胞分化成熟过程时存在的问题和前景。  相似文献   

10.
11.
Chromosome large‐scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high‐resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome.   相似文献   

12.
Metabolic syndrome (MetS), a cluster of metabolic disturbances that increase the risk for cardiovascular disease and diabetes, was because of genetic susceptibility and environmental risk factors. To identify the genetic variants associated with MetS and metabolic components, we conducted a genome‐wide association study followed by replications in totally 12,720 participants from the north, north‐eastern and eastern China. In combined analyses, independent of the top known signal at rs651821 on APOA5, we newly identified a secondary triglyceride‐associated signal at rs180326 on BUD13 (Pcombined = 2.4 × 10−8). Notably, by an integrated analysis of the genotypes and the serum levels of APOA5, BUD13 and triglyceride, we observed that BUD13 was another potential mediator, besides APOA5, of the association between rs651821 and serum triglyceride. rs671 (ALDH2), an east Asian‐specific common variant, was found to be associated with MetS (Pcombined = 9.7 × 10−22) in Han Chinese. The effects of rs671 on metabolic components were more prominent in drinkers than in non‐drinkers. The replicated loci provided information on the genetic basis and mechanisms of MetS and metabolic components in Han Chinese.  相似文献   

13.
Gossypium hirsutum L. represents the largest source of textile fibre, and China is one of the largest cotton‐producing and cotton‐consuming countries in the world. To investigate the genetic architecture of the agronomic traits of upland cotton in China, a diverse and nationwide population containing 503 G. hirsutum accessions was collected for a genome‐wide association study (GWAS) on 16 agronomic traits. The accessions were planted in four places from 2012 to 2013 for phenotyping. The CottonSNP63K array and a published high‐density map based on this array were used for genotyping. The 503 G. hirsutum accessions were divided into three subpopulations based on 11 975 quantified polymorphic single‐nucleotide polymorphisms (SNPs). By comparing the genetic structure and phenotypic variation among three genetic subpopulations, seven geographic distributions and four breeding periods, we found that geographic distribution and breeding period were not the determinants of genetic structure. In addition, no obvious phenotypic differentiations were found among the three subpopulations, even though they had different genetic backgrounds. A total of 324 SNPs and 160 candidate quantitative trait loci (QTL) regions were identified as significantly associated with the 16 agronomic traits. A network was established for multieffects in QTLs and interassociations among traits. Thirty‐eight associated regions had pleiotropic effects controlling more than one trait. One candidate gene, Gh_D08G2376, was speculated to control the lint percentage (LP). This GWAS is the first report using high‐resolution SNPs in upland cotton in China to comprehensively investigate agronomic traits, and it provides a fundamental resource for cotton genetic research and breeding.  相似文献   

14.
15.
Acid mine drainage (AMD) is characterized by an acid and metal‐rich run‐off that originates from mining systems. Despite having been studied for many decades, much remains unknown about the microbial community dynamics in AMD sites, especially during their early development, when the acidity is moderate. Here, we describe draft genome assemblies from single cells retrieved from an early‐stage AMD sample. These cells belong to the genus Hydrotalea and are closely related to Hydrotalea flava. The phylogeny and average nucleotide identity analysis suggest that all single amplified genomes (SAGs) form two clades that may represent different strains. These cells have the genomic potential for denitrification, copper and other metal resistance. Two coexisting CRISPR‐Cas loci were recovered across SAGs, and we observed heterogeneity in the population with regard to the spacer sequences, together with the loss of trailer‐end spacers. Our results suggest that the genomes of Hydrotalea sp. strains studied here are adjusting to a quickly changing selective pressure at the microhabitat scale, and an important form of this selective pressure is infection by foreign DNA.  相似文献   

16.
Recent advances in high‐throughput sequencing technologies provide opportunities to gain novel insights into the genetic basis of phenotypic trait variation. Yet to date, progress in our understanding of genotype–phenotype associations in nonmodel organisms in general and natural vertebrate populations in particular has been hampered by small sample sizes typically available for wildlife populations and a resulting lack of statistical power, as well as a limited ability to control for false‐positive signals. Here we propose to combine a genome‐wide association study (GWAS) and FST‐based approach with population‐level replication to partly overcome these limitations. We present a case study in which we used this approach in combination with genotyping‐by‐sequencing (GBS) single nucleotide polymorphism (SNP) data to identify genomic regions associated with Borrelia afzelii resistance or susceptibility in the natural rodent host of this Lyme disease‐causing spirochete, the bank vole (Myodes glareolus). Using this combined approach we identified four consensus SNPs located in exonic regions of the genes Slc26a4, Tns3, Wscd1 and Espnl, which were significantly associated with the voles’ Borrelia infectious status within and across populations. Functional links between host responses to bacterial infections and most of these genes have previously been demonstrated in other rodent systems, making them promising new candidates for the study of evolutionary host responses to Borrelia emergence. Our approach is applicable to other systems and may facilitate the identification of genetic variants underlying disease resistance or susceptibility, as well as other ecologically relevant traits, in wildlife populations.  相似文献   

17.
The negative effects of inbreeding on fitness are serious concerns for populations of endangered species. Reduced fitness has been associated with lower genome‐wide heterozygosity and immune gene diversity in the wild; however, it is rare that both types of genetic measures are included in the same study. Thus, it is often unclear whether the variation in fitness is due to the general effects of inbreeding, immunity‐related genes or both. Here, we tested whether genome‐wide heterozygosity (20 990 SNPs) and diversity at nine immune genes were better predictors of two measures of fitness (immune response and survival) in the endangered Attwater's prairie‐chicken (Tympanuchus cupido attwateri). We found that postrelease survival of captive‐bred birds was related to alleles of the innate (Toll‐like receptors, TLRs) and adaptive (major histocompatibility complex, MHC) immune systems, but not to genome‐wide heterozygosity. Likewise, we found that the immune response at the time of release was related to TLR and MHC alleles, and not to genome‐wide heterozygosity. Overall, this study demonstrates that immune genes may serve as important genetic markers when monitoring fitness in inbred populations and that in some populations specific functional genes may be better predictors of fitness than genome‐wide heterozygosity.  相似文献   

18.
We present a novel multi‐level methodology to explore and characterize the low energy landscape and the thermodynamics of proteins. Traditional conformational search methods typically explore only a small portion of the conformational space of proteins and are hard to apply to large proteins due to the large amount of calculations required. In our multi‐scale approach, we first provide an initial characterization of the equilibrium state ensemble of a protein using an efficient computational conformational sampling method. We then enrich the obtained ensemble by performing short Molecular Dynamics (MD) simulations on selected conformations from the ensembles as starting points. To facilitate the analysis of the results, we project the resulting conformations on a low‐dimensional landscape to efficiently focus on important interactions and examine low energy regions. This methodology provides a more extensive sampling of the low energy landscape than an MD simulation starting from a single crystal structure as it explores multiple trajectories of the protein. This enables us to obtain a broader view of the dynamics of proteins and it can help in understanding complex binding, improving docking results and more. In this work, we apply the methodology to provide an extensive characterization of the bound complexes of the C3d fragment of human Complement component C3 and one of its powerful bacterial inhibitors, the inhibitory domain of Staphylococcus aureus extra‐cellular fibrinogen‐binding domain (Efb‐C) and two of its mutants. We characterize several important interactions along the binding interface and define low free energy regions in the three complexes. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Nonprecious metal catalysts (NPMCs) Fe?N?C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe?N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1?O2?Fe1?N4. The modulated Fe?N?C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1?O2?Fe1?N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1?O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

20.
Live‐cell correlative light‐electron microscopy (live‐cell‐CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3‐dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB‐SEM) in a modular live‐cell‐CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal‐associated membrane protein 1‐green fluorescent protein (LAMP‐1‐GFP), analyzed the dynamics of individual GFP‐positive spots, and correlated these to their corresponding fine‐architecture and immediate cellular environment. By FIB‐SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB‐SEM, which significantly reduces time required for image acquisition and data processing.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号