首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and sensitive spectrofluorimetric method has been developed and validated for the determination of oseltamivir phosphate (OST) in pharmaceutical preparations. The method is based on the reaction between oseltamivir phosphate and o‐phthalaldehyde in presence of 2‐mercapto‐ethanol in borate buffer, pH 10.8, to give a highly fluorescent product measured at 450 nm after excitation at 336 nm. The different experimental parameters affecting the development and stability of the reaction product were studied and optimized. The fluorescence intensity–concentration plot is rectilinear over the range 0.05–1.0 µg/mL, with a lower detection limit of 5 ng/mL and limit of quantitation of 16 ng/mL. The developed method was successfully applied to the analysis of the drug in its commercial capsules and suspension, mean recoveries of OST were 99.97 ± 1.67% and 100.17 ± 1.18%, respectively (n = 3). Statistical comparison of the results obtained by the proposed and comparison method revealed no significant difference in the performance of the two methods regarding accuracy and precision. The proposed method was further extended to in vitro determination of the studied drug in spiked human plasma as a preliminary investigation; the mean recovery (n = 3) was 98.68 ± 5.8%. A reaction pathway was postulated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In an acidic buffered solution, erythrosine B can react with amiodarone to form an association complex, which not only generates great enhancement in resonance Rayleigh scattering (RRS) spectrum of erythrosine B at 346.5 nm but also results in quenching of fluorescence spectra of erythrosine B at λemission = 550.4 nm/λexcitation = 528.5 nm. In addition, the formed erythrosine B–amiodarone complex produces a new absorbance peak at 555 nm. The spectral characteristics of the RRS, absorbance, and fluorescence spectra, as well as the optimum analytical conditions, were studied and investigated. As a result, new spectroscopic methods were developed to determine amiodarone by utilizing erythrosine B as a probe. Moreover, the ICH guidelines were used to validate the developed RRS, photometric, and fluorimetric methods. The enhancements in the absorbance and the RRS intensity and the decrease in the fluorescence intensity of the used probe were proportional to the concentration of amiodarone in ranges of 2.5–20.0, 0.2–2.5, and 0.25–1.75 μg/mL, respectively. Furthermore, limit of detection values were 0.52 ng/mL for the spectrophotometric method, 0.051 μg/mL for the RRS method, and 0.075 μg/mL for the fluorimetric method. Moreover, with good recoveries, the developed spectroscopic procedures were applied to analyze amiodarone in its commercial tablets.  相似文献   

3.
Propofol and cisatracurium besylate have been simultaneously determined using a highly sensitive first derivative synchronous spectrofluorometric method. The method is based on measuring first derivative synchronous spectrofluorimetric amplitude at Δλ = 40 nm with a scanning rate of 600 nm/min. The different experimental parameters affecting the fluorescence intensity of the two drugs were carefully studied and optimized. The amplitude–concentration plots were rectilinear over the range 40.0–400.0 ng/mL and 20.0–280.0 ng/mL for propofol and cisatracurium, respectively with lower detection limits of 4.0 and 2.35 ng/mL and quantification limits of 12.1 and 7.1 ng/mL for propofol and cisatracurium, respectively. The proposed method was successfully applied for the determination of the two compounds in synthetic mixtures and in commercial ampoules. The high sensitivity attained using the proposed method allowed the simultaneous determination of both drugs in spiked plasma samples. The mean % recoveries in spiked human plasma (n = 3) were 96.53 ± 0.90 and 96.20 ± 1.64 for each of propofol and cisatracurium, respectively. The method was validated in compliance with International Council of Harmonization (ICH) Guidelines.  相似文献   

4.
Antiepileptic drugs are among the most common medications that require therapeutic drug monitoring (TDM). Indeed, TDM provides a realistic approach to adjust drug doses for epilepsy based on plasma concentrations to optimize its clinical outcome. The most common technique for TDM is high-performance liquid chromatography, which has a very low green profile among analytical techniques. Perampanel (PER) is an inherently fluorescent compound that its fluorophore readily allows sensitive and quantitative measurements. This paper describes the development and validation of a sensitive, specific, and eco-friendly spectrofluorimetric method for the determination of PER. Experimental parameters affecting fluorescence intensity of the compound, including solvent dilution, temperature, and excitation wavelength, were studied and optimized. The developed spectrofluorimetric method was established in acetonitrile at λex = 295 nm and λem = 431 nm over a concentration range of 5–60 ng/ml. The adopted method was applied for the determination of PER in human plasma; it was effective in the range of 15–50 ng/ml. The proposed method was found to be sensitive and specific for PER and can be applied successfully in TDM of PER and in quality control laboratories.  相似文献   

5.
In pH 4.99‐6.06 Britton‐Robinson (BR) buffer medium, 6‐benzylaminopurine (6‐BA) reacted with Na2WO4 to form 1:1 anionic chelate (6‐BA·WO4)2‐, which further reacted with rhodamine 6G to form ternary ion complexes at room temperature. This resulted in a significant enhancement of resonance Rayleigh scattering (RRS) with a maximum RRS wavelength of 316 nm. Meanwhile, the fluorescence of the solution was quenched and excitation (λex) and emission (λem) wavelengths of the fluorescence were 290 and 559 nm, respectively. Intensities of RRS enhancing (ΔIRRS) and fluorescence quenching (ΔIF) were directly proportional to concentrations of 6‐BA. As a result, RRS and fluorescence quenching for determination of trace amounts of 6‐BA were developed. Under optimal conditions, linear ranges and detection limits of the two methods were 0.05‐15.00 µg/mL and 8.2 ng/mL (RRS), 0.50‐15.00 µg/mL and 17.0 ng/mL, respectively. It was found that the RRS method was superior to fluorescence quenching. The influence of these methods were investigated and results showed that RRS had good selectivity. RRS was applied to determine 6‐BA in vegetable samples with satisfactory results. Furthermore, the reaction mechanisms of the ternary ion‐association system are discussed. In addition, the polarization experiment revealed that the resonance light scattering (RLS) peak of Na2WO4‐6‐BA‐R6G consisted mainly of depolarized resonance fluorescence and resonance scattering. It was speculated that light emission fluorescence energy (EL) transformed into resonance light scattering energy (ERLS), which was a key reason for enhancement of RRS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A new, simple and sensitive spectrofluorimetric method has been developed for the determination of aliskiren (ALS) in dosage forms and human urine. The method is based on the reaction between ALS and fluorescamine in borate buffer solution, pH 9, to give a highly fluorescent derivative which is measured at 482 nm after excitation at 382 nm. The factors affecting the reaction were carefully studied. The fluorescence intensity concentration plots were rectilinear over the range 140–1400 ng/mL with a limit of detection 13.47 ng/mL and limit of quantitation 40.81 ng/mL. The developed method was successfully applied to the analysis of the drug in tablets and human urine; the average recoveries (n = 6) were 99.88 ± 0.38% and 99.57 ± 0.44%, respectively. The analytical performance of the method was fully validated and the results were satisfactory. The stability of the drug was studied by subjecting it to acidic, basic, oxidative and thermal degradation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The aim of this work is to optimize a spectrofluorimetric method for the determination of cefdinir (CFN) using the Taguchi method. The proposed method is based on the oxidative coupling reaction of CFN and cerium(IV) sulfate. The quenching effect of CFN on the fluorescence of the produced cerous ions is measured at an emission wavelength (λem) of 358 nm after excitation (λex) at 301 nm. The Taguchi orthogonal array L9 (34) was designed to determine the optimum reaction conditions. The results were analyzed using the signal‐to‐noise (S/N) ratio and analysis of variance (ANOVA). The optimal experimental conditions obtained from this study were 1 mL of 0.2% MBTH, 0.4 mL of 0.25% Ce(IV), a reaction time of 10 min and methanol as the diluting solvent. The calibration plot displayed a good linear relationship over a range of 0.5–10.0 µg/mL. The proposed method was successfully applied to the determination of CFN in bulk powder and pharmaceutical dosage forms. The results are in good agreement with those obtained using the comparison method. Finally, the Taguchi method provided a systematic and efficient methodology for this optimization, with considerably less effort than would be required for other optimizations techniques. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The purpose of this study was to develop and validate a rapid, sensitive, and specific reversed-phase high-performance liquid chromatography method for the quantitative determination of native tenofovir (TNF) for various applications. Different analytical performance parameters such as linearity, precision, accuracy, limit of quantification (LOQ), limit of detection (LOD), and robustness were determined according to International Conference on Harmonization (ICH) guidelines. A Bridge™ C18 column (150 × 4.6 mm, 5 μm) was used as stationary phase. The retention time of TNF was 1.54 ± 0.03 min (n = 6). The assay was linear over the concentration range of 0.1–10 μg/mL. The proposed method was sensitive with LOD and LOQ values equal to 50 and 100 ng/mL, respectively. The method was accurate with percent mean recovery from 95.41% to 102.90% and precise as percent RSD (relative standard deviation) values for intra-day, and inter-day precision were less than 2%. This method was utilized for the estimation of molar absorptivity of TNF at 259 nm (ε 259 = 12,518 L/mol/cm), calculated from linear regression analysis. The method was applied for determination of percentage of encapsulation efficiency ( 22.93 ± 0.04%), drug loading (12.25 ± 1.03%), in vitro drug release profile in the presence of enzyme (43% release in the first 3 h) and purification analysis of hyaluronic acid-based nanomedicine.  相似文献   

9.
Functional triterpenic acids such as ursolic acid (UA), oleanolic acid (OA) and betulinic acid (BA) are representative ingredients in rosemary that may have health benefits. UA, OA and BA in rosemary extracts were derivatized with 4‐(4,5‐diphenyl‐1H‐imidazole‐2‐yl)benzoyl chloride (DIB‐Cl) and detected using HPLC‐fluorescence (FL). Dried rosemary (50 mg) was ground, added to 3 ml of ethanol, sonicated for 40 min, then the sample solution was added to a mixture of 1% trimethylamine and 1 mM DIB‐Cl in acetonitrile. The mixture was settled for 5 min at room temperature, then the DIB‐triterpenic acid derivatives were separated using a Wakopak Handy ODS column (250 × 4.6 mm, 6 μm) eluted with 25 mM acetate buffer (pH 4.5)/methanol/acetonitrile (= 8:10:82 v/v/v%). The fluorescence intensity of the eluent was monitored at 365 (λex) and 490 nm (λem) and the maximum retention time of the derivatives was 30 min. Calibration curves constructed using rosemary extract spiked with standards showed good linearity (r ≥ 0.997) in the range 2.5–100 ng/ml. The detection limits at 3σ for internal BA, UA and OA peaks in rosemary extract were 0.2, 0.4 and 0.5 ng/ml, respectively. This method was used to quantify BA, UA and OA in commercially available dried rosemary products.  相似文献   

10.
In the present study, a first validated and green spectrofluorimetric approach for its assessment and evaluation in different matrices was investigated. After using an excitation wavelength of 345 nm, Roxadustat (ROX) demonstrates a highly native fluorescence at an emission of 410 nm. The influences of experimental factors such as pH, diluting solvents, and different organized media were tested, and the most appropriate solvent choice was ethanol. It was confirmed that there was a linear relationship between the concentration of ROX and the relative fluorescence intensity in the range 60.0–1000.0 ng ml−1, with the limit of detection and limit of quantitation, respectively, being 17.0 and 53.0 ng ml−1. The mean recoveries % [±standard deviation (SD), n = 5] for pharmaceutical preparations were 100.11% ± 2.24%, whereas for plasma samples, they were 100.08 ± 1.08% (±SD, n = 5). The results obtained after the application of four greenness criteria, Analytical Eco-Scale metric, NEMI, GAPI, and AGREE metric, confirmed its eco-friendliness. In addition, the whiteness meter (RGB12) confirmed its level of sustainability. The International Council for Harmonisation (ICH) criteria were used to verify the developed method through the study in both spiked plasma samples and content uniformity evaluation. An appropriate standard for various applications in industry and quality control laboratories was developed.  相似文献   

11.
《Endocrine practice》2012,18(3):399-402
ObjectiveTo examine the effect of 50 000 IU-vitamin D2 supplementation in a clinical setting on serum total 25-hydroxyvitamin D (25[OH]D), 25-hydroxyvitamin D2 (25[OH]D2), and 25-hydroxyvitamin D3 (25[OH]D3).MethodsThis retrospective cohort study was performed in an urban tertiary referral hospital in Boston, Massachusetts. Patients who had been prescribed 50 000 IU vitamin D2 repletion and maintenance programs were identified through a search of our electronic medical record. Baseline and follow-up total serum 25(OH)D, 25(OH)D2, and 25(OH)D3 levels were compared.ResultsWe examined the medical records of 48 patients who had been prescribed 50 000 IU vitamin D2 in our clinic. Mean ± standard deviation baseline total 25(OH) D was 31.0 ± 10.6 ng/mL and rose to 48.3 ± 13.4 ng/mL after treatment (P <.001). 25(OH)D2 increased from 4.2 ± 4.3 ng/mL to 34.6 ± 12.3 ng/mL after treatment (P <.001), for an average of 158 days (range, 35-735 days). Serum 25(OH)D3 decreased from 26.8 ± 10.8 ng/mL to 13.7 ± 7.9 ng/mL (P <.001).ConclusionsFifty thousand IU vitamin D2 repletion and maintenance therapy substantially increases total 25(OH)D and 25(OH)D2 despite a decrease in serum 25(OH)D3. This treatment program is an appropriate and effective strategy to treat and prevent vitamin D deficiency.(Endocr Pract. 2012;18:399-402)  相似文献   

12.
A rapid, simple, selective and precise fluorimetric method was developed and validated for determination of a selective xanthine oxidase inhibitor; febuxostat (FBX) in pharmaceutical formulations and in human plasma. The proposed method is based on quenching effect of FBX on the fluorescence intensity of terbium (Tb3+) through fluorescence resonance energy transfer (FRET) from Tb3+ to FBX. The formed complex was measured at λex. 320 nm/λem. 490 nm against a reagent blank. Fluorescence intensity of Tb3+ was diminished when FBX was added. A linear relationship between the fluorescence quenching value of the formed complex and the concentration of FBX was investigated. The reaction conditions and the fluorescence spectral properties of the complex have been studied. The linearity range of the developed method was 1.0–16.0 μg/ml. The suggested method was applied successfully for the estimation of FBX in bulk powder, dosage forms and spiked plasma samples with excellent recoveries (96.79–98.89%). In addition, the developed method has been successfully applied for determination of FBX in real plasma samples collected from healthy volunteers with good recoveries (82.06–85.65%). All obtained results of the developed method were statistically analyzed and validated according to ICH (International Conference on Harmonization) guidelines.  相似文献   

13.
A simple and rapid flow‐injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5–2500 ng/mL and the detection limit (signal‐to‐noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C18) cartridges for solid‐phase extraction. The recoveries were in the range 99 ± 1 to 104 ± 1%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Medicinal plants have significant contribution in pharmaceutical industries being producers of compounds utilized as precursors for drug development. A plant of Lamiaceae family; Pseudocaryopteris foetida had not been investigated for its biomedical potential. Current research was aimed to investigate phytochemical analysis, cytotoxic potential and antioxidant activity of crude methanolic extract and fractions of Pseudocaryopteris foetida (leaves). The preliminary phytochemical analysis of crude methanolic extracts and fractions of Pseudocaryopteris foetida revealed that plant is rich in phenolic and flavonoid classes of secondary metabolites while presence of tannin was observed only in crude methanolic extract. The cytotoxicity was determined using brine shrimp lethality test. Different concentrations (25, 50, 100, 150, 200 and 250 µg/mL) of crude methanolic extract and fractions exhibited dose dependent cytotoxicity. However, The LD50 for all the extracts was more than 200 µg/mL indicating weak cytotoxic potential of Pseudocaryopteris foetida. The antioxidant capabilities of crude methanolic extract and fraction of Pseudocaryopteris foetida were analyzed by in vitro bio assays including DPPH, ABTS, Reducing power and phosphomolybdate antioxidant assays using ascorbic acid as standard. The crude methanolic extract showed IC50 (256.38 ± 0.6 and 314.95 ± 1.1 µg/mL) for DPPH and ABTS respectively, while total antioxidant capacity was calculated as 55.79 ± 0.5 µg/mL for crude methanolic extract of Pseudocaryopteris foetida while ascorbic acid indicated total antioxidant capacity of 71.89 ± 2.3 µg/mL. Study concluded that leaves of Pseudocaryopteris foetida were the rich source of antioxidant phytochemicals. Based on preliminary investigations further research should be focused to isolate bioactive phytochemicals as leading source of clinical medicines in future.  相似文献   

15.
Drug‐protein interaction analysis is pregnant in designing new leads during drug discovery. We prepared the stationary phase containing immobilized β2‐adrenoceptor (β 2AR) by linkage of the receptor on macroporous silica gel surface through N ,N ′‐carbonyldiimidazole method. The stationary phase was applied in identifying antiasthmatic target of protopine guided by the prediction of site‐directed molecular docking. Subsequent application of immobilized β 2AR in exploring the binding of protopine to the receptor was realized by frontal analysis and injection amount–dependent method. The association constants of protopine to β 2AR by the 2 methods were (1.00 ± 0.06) × 105M−1 and (1.52 ± 0.14) × 104M−1. The numbers of binding sites were (1.23 ± 0.07) × 10−7M and (9.09 ± 0.06) × 10−7M, respectively. These results indicated that β 2AR is the specific target for therapeutic action of protopine in vivo. The target‐drug binding occurred on Ser169 in crystal structure of the receptor. Compared with frontal analysis, injection amount–dependent method is advantageous to drug saving, improvement of sampling efficiency, and performing speed. It has grave potential in high‐throughput drug‐receptor interaction analysis.  相似文献   

16.
Little is known about the chronopharmacokinetics of loratadine, a long‐acting tricyclic antihistamine H1 widely used in the treatment of allergic diseases. Hence, the pharmacokinetics of loratadine and its major metabolite, desloratadine, were investigated after a 20 mg/kg dose of loratadine had been orally administered to comparable groups of mice (n=33), synchronized for three weeks to 12 h light (rest span)/12 h dark (activity span). The drug was administered at three different circadian times (1, 9, and 17 h after light onset [HALO]). Multiple blood samples were collected over 48 h, and plasma concentrations of loratadine and desloratadine were determined by high performance liquid chromatography. There were no significant differences in Tmax of loratadine and desloratadine between treatment‐time different groups. However, the elimination half‐life (t1/2) of the parent compound and its metabolite was significantly longer (p<0.01) following administration at 9 HALO (t1/2 loratadine and desloratadine 5.62 and 4.08 h at 9 HALO vs. 4.29 and 2.6 h at 17 HALO vs. 3.26 and 3.27 at 1 HALO). There were relevant (p<0.05) differences in Cmax between the three treated groups for loratadine and desloratadine; 133.05±3.55 and 258.07±14.45 ng/mL at 9 HALO vs. 104.5±2.61 and 188.62±7.20 ng/mL at 1 HALO vs. 94.33±20 and 187.75±10.79 ng/mL at 17 HALO. Drug dosing at 17 HALO resulted in highest loratadine and desloratadine total apparent clearance values: 61.46 and 15.97 L/h/kg, respectively, whereas loratadine and desloratadine clearances (CL) were significantly slower (p<0.05) at the other administration times (loratadine and desloratadine CL was 57.3 and 14.22 L/h/kg at 1 HALO vs. 43.79 and 12.89 L/h/kg at 9 HALO, respectively). The area under the concentration‐time curve (AUC) of loratadine and desloratadine was significantly (p<0.05) greater following drug administration at 9 HALO (456.75 and 1550.57 (ng/mL) · h, respectively); it was lowest following treatment at 17 HALO (325.39 and 1252.53 (ng/mL) · h, respectively). These pharmacokinetic data indicate that the administration time of loratadine significantly affected its pharmacokinetics: the elimination of loratadine and its major metabolite desloratadine.  相似文献   

17.
We have developed a new NIR fluorescent probe based on an ytterbium(III) (E)‐1‐(pyridin‐2‐yl‐diazenyl)naphthalen‐2‐ol (PAN) complex. This probe emits near‐infrared luminescence derived from the Yb ion through excitation of the PAN moiety with visible light (λex = 530 nm, λem = 975 nm). The results support the possible utility of the probe for in vivo fluorescence molecular imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Surmounting the constraints of limited solubilization efficiency and prime requisite of antioxidant for conventional lipid formulations, the research work explores an edge over formulation utilizing potential applicability of rice germ oil (RGO) as a multifunctional excipient. Self-microemulsifying drug delivery system (SMEDDS) of tacrolimus (TAC) was formulated with RGO, an indigenous source of gamma-oryzanol. Being the same biological source, RGO and rice bran oil (RBO) were compared and it was found that RGO have more solubilization potential for TAC (2.2-fold) as well as higher antioxidant activity (8.06-fold) than the RBO. TAC-SMEDDS was prepared using RGO/Capmul PG8 (2:3) as an oil phase, Cremophore EL as a surfactant, and Transcutol P as a cosurfactant. The approximate particle size of TAC-SMEDDS was found to be 38 nm by dynamic light scattering and 12 nm by small angle neutron scattering. The in vitro dissolution studies showed complete and rapid drug release in 30 min compared to a plain drug (<5%) and marketed capsule (<50%). AUC and C max were found to be 45.05 ± 15.64 ng h/ml and 3.91 ± 1.2 ng/ml for TAC-SMEDDS, 12.59 ± 5.54 ng h/ml and 0.48 ± 0.12 ng/ml for plain TAC, and 30.23 ± 10.34 ng h/ml and 2.31 ± 0.68 ng/ml for marketed formulation, respectively. The improved pharmacokinetic profile of TAC-SMEDDS is correlating to the dissolution results. Thus, gamma-oryzanol-enriched RGO acts as a potential multifunctional excipient for lipid formulations.  相似文献   

19.
A simple, highly sensitive and validated spectrofluorimetric method was applied in the determination of clonazepam (CLZ). The method is based on reduction of the nitro group of clonazepam with zinc/CaCl2, and the product is then reacted with 2‐cyanoacetamide (2‐CNA) in the presence of ammonia (25%) yielding a highly fluorescent product. The produced fluorophore exhibits strong fluorescence intensity at ?em = 383 nm after excitation at ?ex = 333 nm. The method was rectilinear over a concentration range of 0.1–0.5 ng/mL with a limit of detection (LOD) of 0.0057 ng/mL and a limit of quantification (LOQ) of 0.017 ng/mL. The method was fully validated and successfully applied to the determination of CLZ in its tablets with a mean percentage recovery of 100.10 ± 0.75%. Method validation according to ICH Guidelines was evaluated. Statistical analysis of the results obtained using the proposed method was successfully compared with those obtained using a reference method, and there was no significance difference between the two methods in terms of accuracy and precision. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The current research work investigates the potential of solid lipid nanoparticles (SLNs) in improving the oral bioavailability of paclitaxel. Paclitaxel-loaded SLNs (PTX-SLNs) were prepared by modified solvent injection method using stearylamine as lipid, soya lecithin and poloxamer 188 as emulsifiers. SLNs were characterized in terms of surface morphology, size and size distribution, surface chemistry and encapsulation efficiency. Pharmacokinetics and bioavailability studies were conducted in male Swiss albino mice after oral administration of PTX-SLNs. SLNs exhibited spherical shape with smooth surface as analyzed by transmission electron microscopy (TEM). The mean particle size of SLNs was 96 ± 4.4 nm with a low polydispersity index of 0.162 ± 0.04 and zeta potential of 39.1 ± 0.8 mV. The drug entrapment efficiency was found to be 75.42 ± 1.5% with a loading capacity of 31.5 ± 2.1% (w/w). Paclitaxel showed a slow and sustained in vitro release profile and followed Higuchi kinetic equations. After oral administration of the PTX-SLNs, drug exposure in plasma and tissues was ten- and twofold higher, respectively, when compared with free paclitaxel solution. PTX-SLNs produced a high mean C max (10,274 ng/ml) compared with that of free paclitaxel solution (3,087 ng/ml). The absorbed drug was found to be distributed in liver, lungs, kidneys, spleen, and brain. The results suggested that PTX-SLNs dispersed in an aqueous environment are promising novel formulations that enhanced the oral bioavailability of hydrophobic drugs, like paclitaxel and were quite safe for oral delivery of paclitaxel as observed by in vivo toxicity studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号