首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, Na3(SO4)X (X = F or Cl) halosulphate phosphors have been synthesized by the solid‐state diffusion method. The phase formation of the compounds Na3(SO4)F and Na3(SO4)Cl were confirmed by X‐ray powder diffraction (XRD) measurement. Photoluminescence (PL) excitation spectrum measurement of Na3(SO4)F:Ce3+ and Na3(SO4)Cl:Ce3+ shows this phosphor can be efficiently excited by near‐ultraviolet (UV) light and presents a dominant luminescence band centred at 341 nm for Ce3+, which is responsible for energy transfer to Dy3+and Mn2+ ions. The efficient Ce3+ → Dy3+ energy transfer in Na3(SO4)F and Na3(SO4)Cl under UV wavelength was observed due to 4 F9/2 to 6H15/2 and 6H13/2 level, while Ce3+ → Mn2+ was observed due to 4 T1 state to 6A1. The purpose of the present study is to develop and understanding the photoluminescence properties of Ce3+‐, Dy3+‐ and Mn2+‐doped fluoride and chloride Na3(SO4)X (X = F or Cl) luminescent material, which can be the efficient phosphors in many applications, such as scintillation applications, TL dosimetry and the lamp industry, etc. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In the recent few years, Eu2+- and Mn4+-activated phosphors are widely used as potential colour converters for indoor plant cultivation lighting application due to their marvellous luminescence characteristics as well as low cost. In this investigation, we synthesized novel red colour-emitting Ca(2−x)Mg2(SO4)3:xmol% Eu2+ (x = 0–1.0 mol%) phosphors via a solid-state reaction method in a reducing atmosphere. The photoluminescence (PL) excitation spectra of synthesized phosphors exhibited a broad excitation band with three excitation bands peaking at 349 nm, 494 nm, and 554 nm. Under these excitations, emission spectra exhibited a broad band in the red colour region at ~634 nm. The PL emission intensity was measured for different concentrations of Eu2+. The maximum Eu2+ doping concentration in the Ca2Mg2(SO4)3 host was observed for 0.5 mol%. According to Dexter theory, it was determined that dipole–dipole interaction was responsible for the concentration quenching. The luminous red colour emission of the sample was confirmed using Commission international de l'eclairage colour coordinates. The results of PL excitation and emission spectra of the prepared phosphors were well matched with excitation and emission wavelengths of phytochrome PR. Therefore, from the entire investigation and obtained results it was concluded that the synthesized Ca0.995Mg2(SO4)3:0.5mol%Eu2+ phosphor has huge potential for plant cultivation application.  相似文献   

3.
The luminescent properties of europium (Eu)‐ and dysprosium (Dy)‐co‐doped K3Ca2(SO4)3Cl halosulfate phosphors were analyzed. This paper reports the photoluminescence (PL) properties of K3Ca2(SO4)3Cl microphosphor doped with Eu and Dy and synthesized using a cost‐effective wet chemical method. The phosphors were characterized by X‐ray diffraction and scanning electron microscopy. The CIE coordinates were calculated to display the color of the phosphor. PL emission of the prepared samples show peaks at 484 nm (blue), 575 nm (yellow), 594 nm (orange) and 617 nm (red). The emission color of the Eu,Dy‐co‐doped K3Ca2(SO4)3Cl halophosphor depends on the doping concentration and excitation wavelength. The addition of Eu in K3Ca2(SO4)3Cl:Dy greatly enhances the intensity of the blue and yellow peaks, which corresponds to the 4 F9/26H15/2 and 4 F9/26H13/2 transitions of Dy3+ ions (under 351 nm excitation). The Eu3+/Dy3+ co‐doping also produces white light emission for 1 mol% of Eu3+, 1 mol% of Dy3+ in the K3Ca2(SO4)3Cl lattice under 396 nm excitation, for which the calculated chromaticity coordinates are (0.35, 0.31). Thus, K3Ca2(SO4)3Cl co‐doped with Eu/Dy is a suitable candidate for NUV based white light‐emitting phosphors technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
《Inorganica chimica acta》1988,141(1):131-138
A variety of novel gaseous polyatomic binary and ternary oxides were observed at ambient temperature arising from lanthanide (Ln) nitrate Schiff base complexes, simple salts and sesquioxides, in an FAB mass spectrometer. The new binary oxides (as singly positive ions) detected are Ln2O3, Ln3O3, Ln3O4, Ln4O4, Ln4O5, Ln4O6, Ln5O6, Ln5O7, Ln5O8, Ln6O8, Ln6O9, Ln7O10, Ln8O11, Ln8O12 and Ln9O13; the ternary gaseous oxides are CeEuO2, CeEu2O3 and Ce2EuO4, LaYbO2, La2YbO4 and LaYb2O4; NdHoO3, Nd2HoO4, and NdHo2O4; YTmO3; YxTm3−xO4, x=1−2; YxTm4−xO6, x=1−3; YxTm5−xO7, x=1−4; YxTm6−xO9, x=1−5. Some of these oxides show the lanthanide cations in unusual oxidation states. Gadolinium-gallium ternary oxides, GdGaO2, GdGaO3 and Gd2GaO4 were also detected. The FAB MS environment is significantly reducing, yielding a homologous series EunOn where Eu2+ is dominant (E°(Eu3+/Eu2+)=−0.35 V) and no gallium or indium oxides (E°(M3+/M°=−0.34 V (In), −0.53 V (Ga)) were formed. The stoichiometry of the polylanthanide ternary oxides formed is determined largely by the chemistry of the major metallic component. The gaseous polyatomic oxides are probably formed through a reductive condensation process involving primary species Ln+ and LnO+ formed when the rare earth compounds are struck by fast Xe atoms. The demonstrated possibility of double component oxide formation broadens the number and types of gaseous lanthanide oxides which are accessible.  相似文献   

5.
Barium‐gadolinium‐titanate (BaGd2Ti4O12) powder ceramics doped with rare‐earth ions (Eu3+ and Tb3+) were synthesized by a solid‐state reaction method. From the X‐ray diffraction spectrum, it was observed that Eu3+ and Tb3+:BaGd2Ti4O12 powder ceramics are crystallized in the form of an orthorhombic structure. Scanning electron microscopy image shows that the particles are agglomerated and the particle size is about 200 nm. Eu3+‐ and Tb3+‐doped BaGd2Ti4O12 powder ceramics were examined by energy dispersive X‐ray analysis, Fourier transform infrared spectroscopy, photoluminescence and thermoluminescence (TL) spectra. Emission spectra of Eu3+‐doped BaGd2Ti4O12 powder ceramics showed bright red emission at 613 nm (5D07F2) with an excitation wavelength λexci = 408 nm (7F05D3) and Tb3+:BaGd2Ti4O12 ceramic powder has shown green emission at 534 nm (5D47F5) with an excitation wavelength λexci = 331 nm ((7F65D1). TL spectra show that Eu3+ and Tb3+ ions affect TL sensitivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A series of single‐phase phosphors based on Na6Mg(SO4)4 (Zeff = 11.70) doped with Dy and Eu was prepared by the wet chemical method. The photoluminescence (PL) and thermoluminescence (TL) properties of Dy3+‐ and Eu3+‐activated Na6Mg(SO4)4 phosphors were investigated. The characteristic emissions of Dy3+ and Eu3+ were observed in the Na6Mg(SO4)4 host. The TL glow curve of the Na6Mg(SO4)4:Dy phosphor consisted of a prominent peak at 234°C and a very small hump at 158°C. The TL sensitivity of the Na6Mg(SO4)4:Dy phosphor was found to be four times less than the commercialized CaSO4:Dy phosphor. The TL dose–response of the Na6Mg(SO4)4:Dy phosphor was studied from a dose range of 5–10 kGy and the linear dose–response was observed up to 1 kGy which is good for a microcrystalline phosphor. Trapping parameters for both the samples were calculated using the Initial Rise and Chen's peak shape methods.  相似文献   

7.
《Inorganica chimica acta》1986,118(2):179-185
Successful syntheses of the first examples of homodinuclear macrocyclic lanthanide complexes are reported. The complexes were obtained as compounds of the 2:2 Schiff base formed by condensing 2,6-diformyl-p-cresol and triethylenetetramine (L7) by a template procedure using lanthanide nitrates and perchlorates. When reactant methanolic solutions were concentrated the complexes were deposited as yellow or orange microcrystalline precipitates, Ln2L7(NO3)4sigma; nH2O or Ln2L7(NO3)4tau; x(OH)x, x = 1 or 2, whereas solutions diluted three times deposited complexes as flaky off-white crystalline precipitates of light lanthanides. The orange Ln2L7(NO3)2(OH)2 complexes can be converted in quantitative yield to the off-white flaky form of Ln2L7(NO3)4sigma; nH2O by refluxing them in methanolic solution containing triethylenetetramine and a three-fold excess of Ln(NO3)3. The complexes were characterized by elemental analysis, fast atom bombardment mass spectrometry, UV-Vis and infrared spectroscopy and thermogravimetry. Interesting and mostly new polyatomic oxo clusters, e.g. Ln2O3+, Ln3O4+, Ln4O6+, Ln5O7+, were dominant in the mass spectra but are treated in detail elsewhere.  相似文献   

8.
Calcium aluminate phosphors activated by Dy3+ have been prepared by a combustion method at a temperature of 600°C. Photoluminescence (PL) and thermoluminescence (TL) properties of gamma‐irradiated Dy‐doped calcium aluminate were investigated. The PL spectrum shows a broad peak around 488 nm and 573 nm, under 347 nm excitation. Thermoluminescence studies were performed for different concentrations of Dy. Optimum intensity of photoluminescence was found for 0.02 mol% concentration of Dy. It was found that initially the peak TL intensity increases with increasing concentration of Dy in the CaAl2O4 host, attains a maximum value for 0.05 mol% concentration and decreases with further increase in the doping concentration due to concentration quenching. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The K2Mg(SO4)2:Eu phosphor, synthesized by a solid‐state diffusion method, was studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. The X‐ray diffraction (XRD) pattern of the material was matched with the standard JCPDF No. 36–1499. For PL characteristics, K2Mg(SO4)2:Eu2+ showed an emission peak at 474 nm when excited at 340 nm, while it showed Eu3+ emission at 580 nm, and 594 nm splitting at 613 nm and 618 nm for an excitation of 396 nm wavelength due to radiative transitions from 5D0 to 7Fj (j = 0, 1, 2, 3). The Commission International de I′ Eclairage (CIE) chromaticity coordinates were also calculated for the K2Mg(SO4)2:Eu phosphor, and were close to the NTSC standard values. For the TL study, the prepared sample was irradiated using a 60Co source of γ‐irradiation at the dose rate of 0.322 kGy/h for 2 min. The formation of traps in K2Mg (SO4)2:Eu and the effects of γ‐radiation dose on the glow curve are discussed. Well defined broad glow peaks were obtained at 186°C. With increasing γ‐ray dose, the sample showed linearity in intensity. The presence of a single glow peak indicated that there was only one set of traps being activated within the particular temperature range. The presented phosphors were also studied for their fading, reusability and trapping parameters. There was just 2% fading during a period of 30 days, indicating no serious fading problem. Kinetic parameters were calculated using the initial rise method and Chen's half‐width method. Activation energy and frequency factor were found to be 0.77 eV and 1.41 × 106 sec?1.  相似文献   

10.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The atomic structure of crystals of the [Eu(NО3)3(HMPA)3] [hexamethylphosphotriamide (HMPA)] complex characterized by an intensive luminescence and triboluminescence was determined using X‐ray structural analysis. Noncentrosymmetric crystals have a monoclinic syngony: a = 16.0686 (3), b = 11.0853 (2), c = 20.9655 Å (4), β = 93.232° (1), space group P21, Z = 4, ρcalc = 1.560 g/cm3. The crystal structure is represented by individual С18Н54EuN12O12P3 complexes linked through van der Waals interactions with clearly expressed cleavage planes. The Eu(III) atom coordination polyhedron reflected the state of a distorted square antiprism. Structural aspects of the suggested model, including formation of triboluminescence properties, were considered and the role of the cleavage planes was discussed.  相似文献   

12.
Photoluminescence (PL) and thermoluminescence (TL) properties of rare earth (RE) ion (RE = Dy3+, Sm3+, Ce3+, Tb3+) activated microcrystalline BaMgP2O7 phosphors are presented in this work. Non‐doped and doped samples of BaMgP2O7 were prepared using a solid state diffusion method and characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), PL and TL. The XRD measurement confirmed the phase purity of the BaMgP2O7 host matrix. The average particle size was found through SEM measurement to be around 2 μm. All activators using the PL technique displayed characteristic excitation and emission spectra that corresponded to their typical f → f and f → d transitions respectively. Thermoluminescence measurements showed that BaMgP2O7:RE (RE = Dy3+, Sm3+, Tb3+, Ce3+) and co‐doped BaMgP2O7:Ce3+,Tb3+ phosphors have also TL behaviour.  相似文献   

13.
 A novel method has been developed to visualize and follow the temporal course of lanthanide transport across the membrane into a single living erythrocyte. By means of confocal scanning microscopy and the optical section technique, the entry of lanthanide ions was followed by the fluorescence quenching of fluorescein isothiocyanate (FITC)-labeled membrane and cytosol. From the difference of the quenching kinetics of the whole section and the central area, the time for diffusion through the membrane and the diffusion in the extracellular and intracellular media can be deduced. To clarify the mechanism of lanthanide-induced fluorescence quenching of FITC-labeled erythrocytes and to ensure that this reaction can be used in this method, the reaction was investigated by steady-state fluorescence techniques. The results showed that the lanthanides strongly quenched the florescence emitted by FITC covalently bound to membrane proteins and cytosolic proteins. The static quenching mechanism is responsible for the fluorescence quenching of FITC-labeled proteins by Ln species. The quenching mechanism is discussed on the basis of complex formation. The dependence of fluorescence quenching on both ion size and the total orbital angular momentum L supports the complexation mechanism. The transport time across the membrane is strikingly correlated with Ln species and extracellular concentration. For a given concentration, the transport time of [Ln(cit)2]3– is much shorter than that of Ln3+, since they enter the cells via the anion channel. This is supported by the inhibition effect of 4,4′-diisothiocyanato-2,2′-stilbenendisulfonate on the transport of [Ln(cit)2]3–. On the other hand, the transport of free Ln3+ might be attributed to the enhanced permeability of erythrocytes owing to Ln3+ binding. These findings strongly demonstrate the existence of the non-internalization mechanism of Ln species uptake by erythrocytes. Received: 7 January 1999 / Accepted: 7 May 1999  相似文献   

14.
A series of Ce3+‐activated blue‐emitting phosphors BaY2Si3O10 (BYSO) was designed and synthesized by a conventional solid‐state method. Upon ultraviolet light (250–370 nm) excitation, the obtained phosphors showed an intense blue emission band centered at 400–427 nm depending on doping concentration, and corresponding to the 5d→4f transition of Ce3+. The effects of doping concentration on crystal structure, emitting color, photoluminescence and photoluminescence excitation spectra, as well as the concentration quenching mechanism were studied in detail. The optimal doping concentration of Ce3+ in this phosphor was demonstrated to be about 0.75% and the concentration quenching mechanism can be ascribed to electric dipole–dipole interactions with a critical distance of ~38 Å. These fine luminescence properties indicate that BYSO:Ce3+ may be a potential blue phosphor for full‐color ultra‐violet (UV) white light emitting diodes (WLEDs).  相似文献   

15.
In this article we report Eu3+ luminescence in novel K3Ca2(SO4)3Cl phosphors prepared by wet chemical methods. The Eu3+ emission was observed at 594 nm and 615 nm, keeping the excitation wavelength constant at 396 nm nearer to light‐emitting diode excitation, Furthermore, phosphors were characterized by X‐ray diffraction for the confirmation of crystallinity. The variation of the photoluminescence intensity with impurity concentration has also been discussed. Thus, prominent emission in the red region makes prepared phosphors more applicable for white light‐emitting diodes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Recently, lanthanide (Ln) luminescent nanocrystals have attracted increasing attention in various fields such as biomedical imaging, lasers, and anticounterfeiting. However, due to the forbidden 4f–4f transition of lanthanide ions, the absorption cross-section and luminescence brightness of lanthanide nanocrystals are limited. To address the challenge, we constructed an optical oscillator-like system to repeatedly simulate lanthanide nanocrystals to enhance the absorption efficiency of lanthanide ions on excitation photons. In this optical system, the upconversion luminescence (UCL) of Tm3+ emission of ~450 nm excited by a 980 nm laser can be amplified by a factor beyond 104. The corresponding downshifting luminescence of Tm3+ at 1460 nm was enhanced by three orders of magnitude. We also demonstrated that the significant luminescence enhancement in the designed optical oscillator-like system was general for various lanthanide nanocrystals including NaYF4:Yb3+/Ln3+, NaErF4@NaYF4 and NaYF4:Yb3+/Ln3+@NaYF4:Yb3+@NaYF4 (Ln = Er, Tm, Ho) regardless of the wavelengths of excitation sources (808 and 980 nm). The mechanism study revealed that both elevated laser power in the optical system and multiple excitations on lanthanide nanocrystals were the main reason for the luminescence amplification. Our findings may benefit the future development of low-threshold upconversion and downshifting luminescence of lanthanide nanocrystals and expand their applications.  相似文献   

17.
《Inorganica chimica acta》1988,145(1):157-161
By reacting aquobis(1,2-naphthoquinone 1-oximato)copper(II) [Cu(nqo)2·H2O] with lanthanide chlorides, new heteropolynuclear complexes containing both CuII and LnIII (LnIII = LaIII, NdIII) were obtained. The compounds have been characterized by elemental and thermogravimetric analysis, electron microprobe analysis, and electronic and vibrational spectral data. A different CuII complex, containing nqo ligands and ionic perchlorate but no lanthanide ions, was obtained by reaction of Cu(nqo)2·H2O with lanthanide perchlorates.  相似文献   

18.
An energy transfer process from Ce3+ to Tb3+ ions was successfully achieved in a Li2SO4–Al2(SO4)3 mixed‐sulphate system. A wet‐chemical synthesis was employed to prepare the Li2SO4–Al2(SO4)3 system by doping Ce3+ and Tb3+ ions individually as well as collectively. The phases were identified using X‐ray diffraction studies. The as‐prepared samples were characterized by FT‐IR and photoluminescence measurements. Green‐light emission was exhibited by Ce3+, Tb3+ co‐doped Li2SO4–Al2(SO4)3 system, thus, indicating its potential as a material for display devices or in the lamp industry.  相似文献   

19.
Single crystals of KCl doped with Ce3+,Tb3+ were grown using the Bridgeman–Stockbarger technique. Thermoluminescence (TL), optical absorption, photoluminescence (PL), photo‐stimulated luminescence (PSL), and thermal‐stimulated luminescence (TSL) properties were studied after γ‐ray irradiation at room temperature. The glow curve of the γ‐ray‐irradiated crystal exhibits three peaks at 420, 470 and 525 K. F‐Light bleaching (560 nm) leads to a drastic change in the TL glow curve. The optical absorption measurements indicate that F‐ and V‐centres are formed in the crystal during γ‐ray irradiation. It was attempted to incorporate a broad band of cerium activator into the narrow band of terbium in the KCl host without a reduction in the emission intensity. Cerium co‐doped KCl:Tb crystals showed broad band emission due to the d–f transition of cerium and a reduction in the intensity of the emission peak due to 5D37Fj (j = 3, 4) transition of terbium, when excited at 330 nm. These results support that energy transfer occurs from cerium to terbium in the KCl host. Co‐doping Ce3+ ions greatly intensified the excitation peak at 339 nm for the emission at 400 nm of Tb3+. The emission due to Tb3+ ions was confirmed by PSL and TSL spectra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We report the synthesis and structural characterization of Er3+,Yb3+‐doped Gd2O3 phosphor. The sample was prepared using the conventional solid‐state reaction method, which is the most suitable method for large‐scale production. The prepared phosphor sample was characterized using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er3+ and Yb3+ were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light‐emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er3+ and Yb3+‐doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号