首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophages (phages) evolve rapidly by acquiring genes from other phages. This results in mosaic genomes. Here, we identify numerous genetic transfers between distantly related phages and aim at understanding their frequency, consequences, and the conditions favoring them. Gene flow tends to occur between phages that are enriched for recombinases, transposases, and nonhomologous end joining, suggesting that both homologous and illegitimate recombination contribute to gene flow. Phage family and host phyla are strong barriers to gene exchange, but phage lifestyle is not. Even if we observe four times more recent transfers between temperate phages than between other pairs, there is extensive gene flow between temperate and virulent phages, and between the latter. These predominantly involve virulent phages with large genomes previously classed as low gene flux, and lead to the preferential transfer of genes encoding functions involved in cell energetics, nucleotide metabolism, DNA packaging and injection, and virion assembly. Such exchanges may contribute to the observed twice larger genomes of virulent phages. We used genetic transfers, which occur upon coinfection of a host, to compare phage host range. We found that virulent phages have broader host ranges and can mediate genetic exchanges between narrow host range temperate phages infecting distant bacterial hosts, thus contributing to gene flow between virulent phages, as well as between temperate phages. This gene flow drastically expands the gene repertoires available for phage and bacterial evolution, including the transfer of functional innovations across taxa.  相似文献   

2.
The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.  相似文献   

3.
We have isolated several new temperate bacteriophages for rhizosphere pseudomonads Pseudomonas putida. Examination of these phages, along with two previously isolated temperate phages PP56 and PP71 of P. putida PpG1 (biovar A), allowed us to classify them into four species on the basis of DNA cross-homology; relative genomic size; and, to a certain extent, the morphology of phage particles. Two of these species are represented by nonidentical variants. No transposable phages were found among these two new species. Three phage species cause various-types of lysogenic conversion manifested in growth suppression of other phage species. This seems to account for the fact that the temperate phage of rhizosphere pseudomonads are seldom encountered. The new phages described can be used for selection of phage-resistant bacterial forms exhibiting antifungal activity that are commercially produced and used for treatment of seeds of cultivated plants.  相似文献   

4.
The poles of bacteria exhibit several specialized functions related to the mobilization of DNA and certain proteins. To monitor the infection of Escherichia coli cells by light microscopy, we developed procedures for the tagging of mature bacteriophages with quantum dots. Surprisingly, most of the infecting phages were found attached to the bacterial poles. This was true for a number of temperate and virulent phages of E. coli that use widely different receptors and for phages infecting Yersinia pseudotuberculosis and Vibrio cholerae. The infecting phages colocalized with the polar protein marker IcsA-GFP. ManY, an E. coli protein that is required for phage lambda DNA injection, was found to localize to the bacterial poles as well. Furthermore, labelling of lambda DNA during infection revealed that it is injected and replicated at the polar region of infection. The evolutionary benefits that lead to this remarkable preference for polar infections may be related to lambda's developmental decision as well as to the function of poles in the ability of bacterial cells to communicate with their environment and in gene regulation.  相似文献   

5.
Bacteriophages of lactobacilli   总被引:13,自引:0,他引:13  
Lactobacilli are members of the bacterial flora of lactic starter cultures used to generate lactic acid fermentation in a number of animal or plant products used as human or animals foods. They can be affected by phage outbreaks, which can result in faulty and depreciated products. Two groups of phages specific of Lactobacillus casei have been thoroughly studied. 1. The first group is represented by phage PL-1. This phage behaves as lytic in its usual host L. casei ATCC 27092, but can lysogenize another strain, L. casei ATCC 334. Bacterial receptors of this phage are located in a cell-wall polysaccharide and rhamnose is the main component of the receptors. Ca2+ and adenosine triphosphate (ATP) are indispensable to ensure the injection of the phage DNA into the bacterial cell. The phage DNA is double-stranded, mostly linear, but with cohesive ends which enables it to be circularized. The vegetative growth of PL-1 proceeds according to the classical mode. Cell lysis is produced by an N-acetyl-muramidase at the end of vegetative growth. 2. The second group is represented by the temperate phage phi FSW of L. casei ATCC27139. It has been shown how virulent phages originate from this temperate phage in Japanese dairy plants. The lysogenic state of phi FSW can be altered either by point mutations or by the insertion of a mobile genetic element called ISL 1, which comes from the bacterial chromosome. This is the first transposable element that has been described in lactobacilli. Lysogeny appears to be widespread among lactobacilli since one study showed that 27% of 148 strains studied, representing 15 species, produced phage particles after induction by mitomycin C. Similarly, 23 out of 30 strains of Lactobacillus salivarius are lysogenic and produce, after induction by mitomycin C, temperate phages, killer particles, or defective phages. Temperate phages have also been found in 10 out of 105 strains of Lactobacillus bulgaricus or Lactobacillus lactis after induction by mitomycin C. Phages so far studied of the latter 2 and closely related lactobacilli, either temperate or isolated as lytic, may be divided into 4 unrelated groups called a, b, c and d. Most of these phages are found in group a and an unquestionable relationship has already been shown between lytic phages and temperate phages that belong to this group. Lytic phage LL-H of L. lactis LL 23, isolated in Finland, is one of the most representative of those of group a and has been extensively studied on the molecular level.  相似文献   

6.
Thirteen virulent phages and two temperate phages of two closely related bacterial species (Lactobacillus lactis and L. bulgaricus) were compared for their protein composition, their antigenic properties, their restriction endonuclease patterns, and their DNA homology. The immunoblotting studies and the DNA-DNA hybridizations showed that the phages could be differentiated into two groups. One group contained 2 temperate phages of L. bulgaricus and 11 virulent phages of L. lactis. Inside each group, at least two common proteins of identical sizes could be detected for each phage. These proteins were able to cross-react in immunoblotting experiments with an antiserum raised against one phage of the same group. Temperate phage DNAs showed partial homology with DNAs from some virulent phages. These homologies seem to be located on the region coding for the structural proteins since recombinant plasmids coding for one of the major phage proteins of one phage were able to hybridize with the DNAs from phages of the same group. These results suggest that temperate and virulent phages may be related to one another.  相似文献   

7.
Bacteriophage genomes show pervasive mosaicism, indicating the importance of horizontal gene exchange in their evolution. Phage genomes represent unique combinations of modules, each of them with a different phylogenetic history. The traditional classification, based on a variety of criteria such as nucleic acid type (single/double-stranded DNA/RNA), morphology, and host range, appeared inconsistent with sequence analyses. With the genomic era, an ever increasing number of sequenced phages cannot be classified, in part due to a lack of morphological information and in part to the intrinsic incapability of tree-based methods to efficiently deal with mosaicism. This problem led some virologists to call for a moratorium on the creation of additional taxa in the order Caudovirales, in order to let virologists discuss classification schemes that might better suit phage evolution. In this context, we propose a framework for a reticulate classification of phages based on gene content. Starting from gene families, we built a weighted graph, where nodes represent phages and edges represent phage-phage similarities in terms of shared genes. We then apply various measures of graph topology to analyze the resulting graph. Most double-stranded DNA phages are found in a single component. The values of the clustering coefficient and closeness distinguish temperate from virulent phages, whereas chimeric phages are characterized by a high betweenness coefficient. We apply a 2-step clustering method to this graph to generate a reticulate classification of phages: Each phage is associated with a membership vector, which quantitatively characterizes its membership to the set of clusters. Furthermore, we cluster genes based on their "phylogenetic profiles" to define "evolutionary cohesive modules." In virulent phages, evolutionary modules span several functional categories, whereas in temperate phages they correspond better to functional modules. Moreover, despite the fact that modules only cover a fraction of all phage genes, phage groups can be distinguished by their different combination of modules, serving the bases for a higher level reticulate classification. These 2 classification schemes provide an automatic and dynamic way of representing the relationships within the phage population and can be extended to include newly sequenced phage genomes, as well as other types of genetic elements.  相似文献   

8.
Temperate phages were induced from Streptococcus cremoris R1, BK5, and 134. DNA from the three induced phages was shown to be homologous with prophage DNA in the bacterial chromosomes of their lysogenic hosts by the Southern blot hybridization technique. 32P-labeled DNA from 11 lytic phages which had been isolated on cheese starters was similarly hybridized with DNA from 36 strains of lactic streptococci. No significant homology was detected between the phage and bacterial DNA. Phages and lactic streptococci used included phages isolated in a recently opened cheese plant and all the starter strains used in the plant since it commenced operation. The three temperate phages were compared by DNA-DNA hybridizations with 25 lytic phages isolated on cheese starters. Little or no homology was found between DNA from the temperate and lytic phages. In contrast, temperate phages showed a partial relationship with one another. Temperate phage DNA also showed partial homology with DNA from a number of strains of lactic streptococci, many of which have been shown to be lysogenic. This suggests that many temperate phages in lactic streptococci may be related to one another and therefore may be homoimmune with one another. These findings indicate that the release of temperate phages from starter cells currently in use is unlikely to be the predominant source of lytic phages in cheese plants.  相似文献   

9.
Bacteriophage T12, the prototypic bacteriophage of Streptococcus pyogenes carrying the erythrogenic toxin A gene (speA), integrates into the bacterial chromosome at a gene for a serine tRNA (W. M. McShan, Y.-F. Tang, and J. J. Ferretti, Mol. Microbiol. 23:719-728, 1997). This phage is a member of a group of related temperate phages, and we show here that not all speA-carrying phages in this group use the same attachment site for integration into the bacterial chromosome. Additionally, other phages in the group use the same serine tRNA gene attachment site as phage T12 and yet do not carry speA. The evidence suggests that recombination between phage genomes has been an important means of generating diversity and disseminating virulence-associated genes like speA.  相似文献   

10.
We report the genetic organisation of six prophages present in the genome of Lactococcus lactis IL1403. The three larger prophages (36–42 kb), belong to the already described P335 group of temperate phages, whereas the three smaller ones (13–15 kb) are most probably satellites relying on helper phage(s) for multiplication. These data give a new insight into the genetic structure of lactococcal phage populations. P335 temperate phages have variable genomes, sharing homology over only 10–33% of their length. In contrast, virulent phages have highly similar genomes sharing homology over >90% of their length. Further analysis of genetic structure in all known groups of phages active on other bacterial hosts such as Escherichia coli, Bacillus subtilis, Mycobacterium and Streptococcus thermophilus confirmed the existence of two types of genetic structure related to the phage way of life. This might reflect different intensities of horizontal DNA exchange: low among purely virulent phages and high among temperate phages and their lytic homologues. We suggest that the constraints on genetic exchange among purely virulent phages reflect their optimal genetic organisation, adapted to a more specialised and extreme form of parasitism than temperate/lytic phages.  相似文献   

11.
Any bacterial strain can be infected by virulent phages or harbour one or more prophages. Therefore, bacteria-phage interactions are to be regarded as fundamental properties of bacteria. In current industrial fermentation processes phages can be advantageously employed for the identification of bacterial production strains (phage typing). In some cases phages are involved in the production of enzymes and special substances. The fundamental importance of phages in any technical fermentation process, however, is based on the peculiarities of their obligately parasitic life cycle. The propagation of phages in fermentation processes can cause complete (or at least partial) lysis of the production strains and, consequently, serious disturbances in the production process and considerable economic losses. The phage problem in the fermentation industry has not yet been completely solved. For the protection of technical processes against virulent phages five measures are discussed: phage-protected sterile fermentation, employment of alternative cultures, employment of phage-resistant mutants, employment of phage inhibitors, and employment of immobilized bacterial cells. The problem of the protection of bacterial production strains from prophage induction is more difficult and practically unsolved. Two possibilities to minimize the process risk due to temperate phages, the elimination of inducing factors during the fermentation process, and the selection of production strains which are difficult to induce, are discussed.  相似文献   

12.
A brief review of literature data and our investigations on the antibodies used for specific labeling in electron microscopy is presented. Considered are the problems connected with structure and function of separate components of bacterial viruses revealed by means of specific antibodies. The results of fine differentiation of antigenic components in the case of phages of the colidysentery group allowed to elucidate the functional role of the adsorption apparatus in the course of phage interaction with the bacterial cell. The topology of structural proteins (gene-products 35, 36, 37) of the tail's long strands for phages T4, DDVI+h and DDVIh is determined. Antigenic properties of proteins that are found in the composition of two forms of Bacillus mycoides are demonstrated immune-electronmicroscopically. On the basis of this finding, a conclusion was made that one of these phages acted as precursor, the other--as satellite during the simultaneous development of these phages in the bacterial cell. It was also established that temperate and virulent phages are related antigenically, which proves that lysogenic bacteria can be one of the phage sources on the environmental conditions. Visualization of non-ribosomal genes of procaryots that code for structural proteins of a defective phage proves the efficiency of the immune-electronmicroscopic method for investigating of biological objects.  相似文献   

13.
In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage–host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage-mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage–host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage–host interactions in the oceans.  相似文献   

14.
Molecular taxonomy of Lactobacillus phages   总被引:4,自引:0,他引:4  
Forty-eight strains of lactobacilli used as starter strains in the dairy industry were examined for lysogeny after treatment with mitomycin C. Two strains of L. delbrueckii subsp. bulgaricus were able to produce active phages. These temperate phages as well as 4 virulent phages isolated during abnormal fermentations were compared to a previously characterized phage mv4 which is temperate. All these phages were shown to be partially homologous by DNA-DNA hybridization. Genes that code for viral proteins seem to be well conserved since 2 major virion polypeptides of 18 (or 19) kD and 34 kD could be detected in the protein composition of each phage. Immunoblotting studies of the 7 phages using serum raised against phage mv4 confirmed that the proteins of the different phages were related. All these phages can be classified in the previously constituted group a, which now comprises 4 temperate and 15 virulent phages. These results show that some virulent phages appearing during abnormal fermentations and some temperate phages isolated by appearing during abnormal fermentations and some temperate phages isolated by induction of starter strains can be closely related genetically. Five virulent phages of L. helveticus were also compared according to their restriction pattern and their DNA homology. They were shown to be related to one another, but unrelated to phages of other lactic acid bacteria species.  相似文献   

15.
Population and evolutionary dynamics of phage therapy   总被引:1,自引:0,他引:1  
Following a sixty-year hiatus in western medicine, bacteriophages (phages) are again being advocated for treating and preventing bacterial infections. Are attempts to use phages for clinical and environmental applications more likely to succeed now than in the past? Will phage therapy and prophylaxis suffer the same fates as antibiotics--treatment failure due to acquired resistance and ever-increasing frequencies of resistant pathogens? Here, the population and evolutionary dynamics of bacterial-phage interactions that are relevant to phage therapy and prophylaxis are reviewed and illustrated with computer simulations.  相似文献   

16.
The DNA methylation capacity and some other properties of the related temperate Bacillus subtilis phages Z, SPR, SP beta, phi 3T, and rho 11 are compared. With phage mutants affected in their methylation potential, we show that phage-coded methyltransferase genes are interchangeable among the phages studied. DNA/DNA hybridization experiments indicate that phage methyltransferase genes are structurally related, whereas no such relationship is observed to a bacterial gene, specifying a methyltransferase with the same specificity.  相似文献   

17.
Thirty-three virulent and five temperate phages of Streptococcus lactis and Streptococcus cremoris were differentiated into three groups by DNA homology. A complete lack of DNA homology was demonstrated between the phage groups. Within each group, large parts of the phage genomes were homologous except for a few phages. One group consisted of five temperate and two virulent phages suggesting that virulent phages isolated during abnormal fermentations and temperate phages isolated after induction from lactic streptococcal starter cultures may be related to one another. We observed a good correlation between the grouping of phages by DNA homology and by their protein composition since within the same DNA homology group, the protein composition of a phage exhibited some similarities with that of the other phages of the group. Therefore, the DNA homologies seemed to be located, at least, in the region coding for the structural proteins. By immunoblotting, we confirmed the relatedness between the proteins of the phages belonging to the same DNA homology group. The important host range factor in bacterium-phage interactions appeared to be an unreliable criterion in determining phage taxonomy.  相似文献   

18.
Twenty-eight coliphages were studied for their susceptibility to four systems of host control variation in Escherichia coli. Both temperate and virulent phages were studied, including phages with ribonucleic acid, double- and single-stranded deoxyribonucleic acid (DNA) and glucosylated DNA. The systems examined were E. coli C-K, K-B, B-K, and K-K(P1). The C-K, K-B, and B-K systems affected temperate phages and nonlysogenizing mutants derived from temperate phages. In general, these systems did not restrict virulent phages. Phage 21e, a variant of phage 21, lost the ability to undergo restriction in the C-K and B-K systems, but retained susceptibility to the K-B and K-K(P1) systems. This suggests that the genetic site(s) on the phage, as well as in the host, determines susceptibility to host-controlled variation. Both temperate and dependent virulent phages were susceptible to the host control system resulting from the presence of prophage P1. The autonomous and small virulents were not susceptible. In a given system, the various susceptible phages differed widely in their efficiency of plating on the restricting host. If the few infections that occur arise in rare special cells, then different populations of special cells are available to different phage species. For most phage types, when a susceptible phage infected a nonrestricting host, the progeny showed the specificity appropriate to that host. Behavior of T3 was exceptional, however. When T3 obtained from E. coli K infected E. coli C or B, some of the progeny phages retained K host specificity, whereas others acquired the specificity of the new host.  相似文献   

19.
Phage-inducible chromosomal islands (PICIs) are a widespread family of highly mobile genetic elements that disseminate virulence and toxin genes among bacterial populations. Since their life cycle involves induction by helper phages, they are important players in phage evolution and ecology. PICIs can interfere with the lifecycle of their helper phages at different stages resulting frequently in reduced phage production after infection of a PICI-containing strain. Since phage defense systems have been recently shown to be beneficial for the acquisition of exogenous DNA via horizontal gene transfer, we hypothesized that PICIs could provide a similar benefit to their hosts and tested the impact of PICIs in recipient strains on host cell viability, phage propagation and transfer of genetic material. Here we report an important role for PICIs in bacterial evolution by promoting the survival of phage-mediated transductants of chromosomal or plasmid DNA. The presence of PICIs generates favorable conditions for population diversification and the inheritance of genetic material being transferred, such as antibiotic resistance and virulence genes. Our results show that by interfering with phage reproduction, PICIs can protect the bacterial population from phage attack, increasing the overall survival of the bacterial population as well as the transduced cells. Moreover, our results also demonstrate that PICIs reduce the frequency of lysogenization after temperate phage infection, creating a more genetically diverse bacterial population with increased bet-hedging opportunities to adapt to new niches. In summary, our results identify a new role for the PICIs and highlight them as important drivers of bacterial evolution.  相似文献   

20.
AIMS: Sequences related to Lactobacillus delbrueckii phage JCL1032 genome integration, the maintenance of lysogeny and putative immunity genes were characterized. Phenotypic changes of the JCL1032 lysogens were investigated. METHODS AND RESULTS: Integration of JCL1032 DNA into the host genome and the location of phage and bacterial attachment sites were studied by standard molecular methods. The frequency of lysogenization was 10(-7), and stable lysogeny was an even rarer phenomenon. JCL1032 integrates its genome into two distinct host genes of unknown functions. According to EOP (efficiency of plating) and adsorption tests JCL1032 lysogens showed resistance against several virulent and temperate Lactobacillus phages at different steps of phage infection. CONCLUSIONS: Temperate JCL1032 integrates its genome into bacterial DNA with exceptionally low frequency. JCL1032 lysogens express a complex phage resistance against several Lact. delbrueckii phages. An antagonistic arms race between the temperate phage and its host is proposed. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first time that the genome integration of a group c Lact. delbrueckii phage has been described. The characterized lysogens could facilitate studies on Lact. delbrueckii phage receptors and phage resistance mechanisms. The genetic information gained from this study benefits the development of integration vectors and phage resistant starters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号