首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro assays were made of the effect of a static magnetic field of a neodymium magnet on cellular behavior. The cell turnover rate was examined by the incorporation of radioactive thymidine, and anabolic processes were measured by the incorporation of radioactive proline. Cell cultures of fibroblast- and osteoblast-like cells of the neonatal rat calvarium were assayed to determine uptakes of radioactive thymidine and proline; these assays were performed in conjunction with examination of an explant of the rat calvarium. The cells were assayed after exposure to a field for 1-, 3-, 5-, 7-, and 10-day periods. Cells were exposed to north and south poles with a pole-face flux density of 0.61 T; control cultures were exposed to an unmagnetised piece of neodymium. After sham exposure or exposure to the magnetic field, 50 μCuries/ml of culture media of isotope were added to the culture medium. The cultures were returned to an incubator for 6 h. Then, following centrifugation, the supernatant was assayed for radioactivity in a scintillation counter after addition of 3 ml of scintillation fluid. A statistically significant magnetic stimulation of turnover rate and synthesis of fibroblasts was found, but stimulation of osteoblasts did not occur. Conversely, the explants, which represent the osteoblasts and fibroblasts in an organised system, showed a statistically significant inhibition in uptake of the radioactive label. The data indicate both variability and diversity of cellular behaviour, and they accentuate the need for caution in the interpretation of effects of static magnetic fields. © 1993 Wiley-Liss, Inc.  相似文献   

2.
The effects of exposure to static (1–100 mT) or sinusoidal (1 Hz, 1.6 mT) magnetic fields on the production of nitric oxide (NO) by murine BCG-activated macrophages were investigated. In these cells, the inducible isoform of NO synthase is present. No significant differences were observed in nitrite levels among exposed, sham-exposed, or control macrophages after exposure for 14 h to static fields of 1, 10, 50, and 100 mT and to sinusoidal 1.6 mT, 1 Hz magnetic fields. © 1996 Wiley-Liss, Inc.  相似文献   

3.
To characterize the properties of static magnetic fields on firing of action potentials (AP) by sensory neurons in cell culture, we developed a mathematical formalism based on the expression for the magnetic field of a single circular current loop. The calculated fields fit closely the field measurements taken with a Hall effect gaussmeter. The biological effect induced by different arrays of permanent magnets depended principally on the spatial variation of the fields, quantified by the value of the gradient of the field magnitude. Magnetic arrays of different sizes (macroarray: four center-charged neodymium magnets of ?14 mm diameter; microarray: four micromagnets of the same material but of ?0.4 mm diameter) allowed comparison of fields with similar gradients but different intensities at the cell position. These two arrays had a common gradient value of ?1 mT/mm and blocked >70% of AP. Alternatively, cells placed in a field strength of ?0.2 mT and a gradient of ?0.02 mT/mm produced by the macroarray resulted in no significant reduction of firing; a microarray field of the same strength but with a higher gradient of ?1.5 mT/mm caused ?80% AP blockade. The experimental threshold gradient and the calculated threshold field intensity for blockade of action potentials by these arrays were estimated to be ?0.02 mT/mm and ?0.02 mT, respectively. In conclusion, these findings suggest that spatial variation of the magnetic field is the principal cause of AP blockade in dorsal root ganglia in vitro. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Pulsed electromagnetic fields (PEMFs) have been used extensively in bone fracture repairs and wound healing. It is accepted that the induced electric field is the dose metric. The mechanisms of interaction between weak magnetic fields and biological systems present more ambiguity than that of PEMFs since weak electric currents induced by PEMFs are believed to mediate the healing process, which are absent in magnetic fields. The present study examines the response of human umbilical vein endothelial cells to weak static magnetic fields. We investigated proliferation, viability, and the expression of functional parameters such as eNOS, NO, and also gene expression of VEGF under the influence of different doses of weak magnetic fields. Applications of weak magnetic fields in tissue engineering are also discussed. Static magnetic fields may open new venues of research in the field of vascular therapies by promoting endothelial cell growth and by enhancing the healing response of the endothelium. Bioelectromagnetics 31:296–301, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Static magnetic field (SMF) modulates bone metabolism, but little research is concerned with the effects of SMF on osteoclast. Our previous studies show that osteogenic differentiation is strongly correlated with magnetic strength from hypo (500 nT), weak (geomagnetic field, GMF), moderate (0.2 T) to high (16 T) SMFs. We speculated that the intensity that had positive (16 T) or negative (500 nT and 0.2 T) effects on osteoblast differentiation would inversely influence osteoclast differentiation. To answer this question, we examined the profound effects of SMFs on osteoclast differentiation from pre-osteoclast Raw264.7 cells. Here, we demonstrated that 500 nT and 0.2 T SMFs promoted osteoclast differentiation, formation and resorption, while 16 T had an inhibitory effect. Almost all the osteoclastogenic genes were highly expressed under 500 nT and 0.2 T, including RANK, matrix metalloproteinase 9 (MMP9), V-ATPase, carbonic anhydrase II (Car2) and cathepsin K (CTSK), whereas they were decreased under 16 T. In addition, 16 T disrupted actin formation with remarkably decreased integrin β3 expression. Collectively, these results indicate that osteoclast differentiation could be regulated by altering the intensity of SMF, which is just contrary to that on osteoblast differentiation. Therefore, studies of SMF effects could reveal some parameters that could be used as a physical therapy for various bone disorders.  相似文献   

6.
7.
目的:研究不同处理时间稳恒磁场协同抗癌药物环磷酰胺对人白血病细胞K5 6 2的杀伤作用。方法:K5 6 2细胞经不同浓度的环磷酰胺和/或磁场处理12h或2 4h后,MTT法检测。数据进行统计学分析处理。结果:单纯磁场处理时,磁场对K5 6 2细胞的杀伤作用表现在2 4h(P <0 .0 1) ;环磷酰胺单纯处理K5 6 2细胞12h ,在0 .4和0 .8mg/mL浓度时对肿瘤细胞的生长没有影响(P >0 .0 5 ) ,在1.6和3.2mg/mL浓度下环磷酰胺对细胞有杀伤作用(P <0 .0 1) ;0 .4mg/mL环磷酰胺联合磁场处理K5 6 2细胞12~2 4h后,细胞活性均极显著的低于单纯环磷酰胺处理组(P <0 .0 1)。结论:9mT稳恒磁场对环磷酰胺杀伤肿瘤细胞具有一定的协同作用,磁场处理可以增加环磷酰胺的抗肿瘤效应。  相似文献   

8.
The aim of this study was to investigate the effect of static magnetic fields (SMF) on reactive oxygen species induced by X‐ray radiation. The experiments were performed on lymphocytes from male albino Wistar rats. After exposure to 3 Gy X‐ray radiation (with a dose rate of 560 mGy/min) the measurement of intracellular reactive oxygen species in lymphocytes, using a fluorescent probe, was done before exposure to the SMF, and after 15 min, 1 and 2 h of exposure to the SMF or a corresponding incubation time. For SMF exposure, 0 mT (50 µT magnetic field induction opposite to the geomagnetic field) and 5 mT fields were chosen. The trend of SMF effects for 0 mT was always opposite that of 5 mT. The first one decreased the rate of fluorescence change, while the latter one increased it. Bioelectromagnetics 34:333–336, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to measure the 3D displacement and strain tensors. The DVC algorithm includes a zero‐mean normalized cross‐correlation criterion‐based coarse search regime, an inverse compositional Gauss‐Newton fine search algorithm and a local ternary quadratic polynomial fitting strain calculation method. A 3D optical coherence tomography (OCT) scanning protocol is proposed through theoretical analysis and experimental verification. Measurement errors of the DVC‐based 3D OCE method are evaluated to be less than 2.0 μm for displacements and 0.30% for strains by rigid body motion experiments. The 3D displacements and strains of a phantom and a specimen of chicken breast tissue under compression are measured. Results of the phantom show a good agreement with theoretical analysis and tensile testing. The strains of the chicken breast tissue indicate anisotropic biomechanical properties. This study provides an effective method for 3D biomechanical property studies of soft tissue and improves the development of 3D OCE techniques.  相似文献   

10.
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

11.
12.
Ligand-gated ion channel kinetics were studied in mammalian transfected cells encoding adult mouse muscle acetylcholine (ACh) receptors. We measured macroscopic and single-channel currents using the outside-out and cell-attached patch-clamp configurations. Cultured cells were exposed to moderate intensity inhomogeneous static magnetic fields up to 180 mT and measurements were performed for temperatures ranging from 5 to 50 °C. We found no significant changes in ACh-elicited macroscopic or single-channel currents. We observed the expected dependence in current decay constants with temperature, but negligible magnetic field influence on the channel's kinetics.  相似文献   

13.
We investigated whether a combination of static electromagnetic field (EMF) at a flux density of 4.75 T together with pulsed EMF at a flux density of 0.7 mT generated by an NMR apparatus (NMRF), could promote movements of Ca(2+), cell proliferation, and the eventual production of proinflammatory cytokines in human lymphocytes as well as in Jurkat cells, after exposure to the field for 1 h. The same study was also performed after activation of cells with 5 micro g/ml phytohaemagglutinin (PHA) immediately before the exposure period. Our results clearly demonstrate that NMRF exposure increases the [Ca(2+)](i), without any proliferative, or activating, or proinflammatory effect on both normal and PHA stimulated lymphocytes. Accordingly, the levels of interferon gamma, tumor necrosis factor alpha, interleukin-1beta, interleukin-2, and interleukin-6 remained unvaried after exposure. Exposure of Jurkat cells statistically decreased the [Ca(2+)](i) and the proliferation. This is consistent with the low levels of IL-2 measured in supernatants of these cells after exposure. On the whole our data suggest that static and pulsed NMRF exposure contribute synergistically in the increase of the [Ca(2+)](i) without any activating or proinflammatory effect either in normal or in PHA challenged lymphocytes. In Jurkat cells, by changing the properties of cell membranes, NMRF exposure can influence Ca(2+) transport processes and hence Ca(2+) homeostasis, causing a marked decrease of proliferation.  相似文献   

14.
Due to widespread exposure of human being to various sources of static magnetic fields (SMF), their effect on the spatial and temporal status of structure, arrangement, and polymerization of tubulin was studied at the molecular level. The intrinsic fluorescence intensity of tubulin was increased by SMF, indicating the repositioning of tryptophan and tyrosine residues. Circular Dichroism spectroscopy revealed variations in the ratios of alpha helix, beta, and random coil structures of tubulin as a result of exposure to SMF at 100, 200, and 300 mT. Transmission Electron microscopy of microtubules showed breaches and curvatures whose risk of occurrence increased as a function of field strength. Dynamic light scattering revealed an increase in the surface potential of tubulin aggregates exposed to SMF. The rate and extent of polymerization increased by 9.8 and 33.8%, at 100 and 300 mT, respectively, but decreased by 36.16% at 200 mT. The conductivity of polymerized tubulin increased in the presence of 100 and 300 mT SMF but remained the same as the control at 200 mT. The analysis of flexible amino acids along the sequence of tubulin revealed higher SMF susceptibility in the helical electron conduction pathway set through histidines rather than the vertical electron conduction pathway formed by tryptophan residues. The results reveal structural and functional effects of SMF on tubulin assemblies and microtubules that can be considered as a potential means to address the safety issues and for manipulation of bioelectrical characteristics of cytosol, intracellular trafficking and thus, the living status of cells, remotely.  相似文献   

15.
Different factors (e.g., light, humidity, and temperature) including exposure to static magnetic fields (SMFs), referred here as critical factors, can significantly affect horticultural seed performance. However, the link between magnetic field parameters and other interdependent factors affecting seed viability is unclear. The importance of these critical factors affecting tomato (Solanum lycopersicum L.) var. MST/32 seed performance was assessed after performing several treatments based on a L9 (34) (four factors at three levels) orthogonal array (OA) design. The variable factors in the design were magnetic flux density (R1 = 332.1 ± 37.8 mT; R2 = 108.7 ± 26.9 mT; and R3 = 50.6 ± 10.5 mT), exposure time (1, 2, and 24 h), seed orientation (North polarity, South polarity, and control – no magnetic field), and relative humidity (RH) (7.0, 25.5, and 75.5%). After seed moisture content stabilisation at the different chosen RH, seeds were exposed in dark under laboratory conditions to several treatments based on the OA design before performance evaluation. Treatments not employing magnetic field exposure were used as controls. Results indicate that electrolyte leakage rate was reduced by a factor of 1.62 times during seed imbibition when non-uniform SMFs were employed. Higher germination (∼11.0%) was observed in magnetically-exposed seeds than in non-exposed ones, although seedlings emerging from SMF treatments did not show a consistent increase in biomass accumulation. The respective influence of the four critical factors tested on seed performance was ranked (in decreasing order) as seed orientation to external magnetic fields, magnetic field strength, RH, and exposure time. This study suggests a significant effect of non-uniform SMFs on seed performance with respect to RH, and more pronounced effects are observed during seed imbibition rather than during later developmental stages.  相似文献   

16.
Whether exposure to static magnetic fields (SMF) for medical applications poses a therapeutic benefit or a health hazard is at the focus of current debate. As a peripheral nerve model for studies of the SMF effects, we have investigated whether exposure of in vitro frog sciatic nerve fibers to moderate-intensity gradient SMF up to 0.7 T modulates membrane excitation and refractory processes. We measured the changes in the amplitudes of the electrically evoked compound action potentials for three groups: a control group without SMF exposure and two exposed groups with continuous inhomogeneous exposure to maximum flux densities (B(max)) of 0.21 and 0.7 T SMF for 6 h. The values of the nerve conduction velocity of C fibers were significantly reduced by B(max) of 0.7 T SMF during the 4- to 6-h exposure period but not by B(max) of 0.21 T SMF during the entire exposure period of 6 h, relative to the unexposed control. From these findings, we speculate that exposure to moderate-intensity gradient SMF may attenuate pain perception because the C fibers are responsible for pain transmission. Although the mechanistic reasons for this decrease have yet to be clarified, SMF could affect the behavior of some types of ion channels associated with C fibers.  相似文献   

17.
We conducted a pilot study to assess magnetic field levels in electric compared to gasoline‐powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline‐powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline‐powered vehicle and at least one electric vehicle, enabling intra‐model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40–1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline‐powered cars (P < 0.0001). Using the data from a previous exposure assessment of residential exposure in eight geographic regions in the United States as a basis for comparison (N = 218), the broadband magnetic fields in electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross‐section of electric‐type vehicles. Bioelectromagnetics 34:156–161, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Combined parallel static and alternating magnetic fields cause a rapid change in the ionic current flowing through an aqueous glutamic acid solution when the alternating field frequency is equal to the cyclotron frequency. The current peak is 20-30% of the background direct current. The peak is observed with slow sweep in the alternating magnetic field frequency from 1 Hz-10 Hz. Only one resonance peak in the current is observed in this frequency range. The frequency corresponding to the peak is directly proportional to the static magnetic field. The above effect only arises at very small alternating field amplitude in the range from 0.02 μT-0.08 μT. Bioelectromagnetics 19:41–45, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
20.
A problem frequently encountered when modeling the power frequency magnetic fields, B and A, produced by two sources is the necessity of estimating the root mean square (rms) magnitude of their sum, i.e., T = /B + A/, when the rms magnitudes, B and A, of the fields are specified by the model, but not necessarily their spatial directions, polarizations, and/or relative phase. The estimator Q = sqrt [B2+A2] was proposed many years ago for this purpose. The accuracy of this estimator is characterized in this paper. If it is known that B and A are approximately linearly polarized and in phase, the maximum bias (i.e., systematic) and random errors for Q used to estimate T are 6.1 and 35%, respectively, when B = A. These errors decrease as the difference between B and A increases. The bias and random errors are, respectively, 3.2 and 26% when B = 2A or A/2 and 0.2 and 5.8% when B = 10A or A/10. If the directions, relative phase, and polarizations of the two fields are unknown, Q has maximum bias and random errors of approximately 2.6 and approximately 23%, respectively, when B = A. These errors decrease to approximately 1.5 and approximately 18% when B =2 A or A/2 and approximately 0.08 and approximately 4.0% when B = 10A or A/10. If B and A are known to be linearly polarized and collinear, but with unknown phase between them, the maximum bias and random errors are 11 and 48%, respectively, when B = A. The errors are 5.1 and 32% when B = 2A or A/2 and 0.2 and 7.0% when B = 10A or A/10. Estimators for T with zero bias can be derived, but they are more complicated and increase overall accuracy very little.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号